OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Vol. 16, Iss. 3 — Mar. 1, 1999
  • pp: 718–727

Noise location and the slope of the psychometric function for simple motion stimuli

Bryan L. Gros, David R. Pope, and Theodore E. Cohn  »View Author Affiliations


JOSA A, Vol. 16, Issue 3, pp. 718-727 (1999)
http://dx.doi.org/10.1364/JOSAA.16.000718


View Full Text Article

Acrobat PDF (242 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We measured subject performance as a function of luminance for both detection and discrimination of increment stimuli; some were static, and some were arranged to give two-step apparent motion. Our aim was to examine a prediction for the shape of the psychometric function for motion: an accelerating function due to the presence of a multiplicative nonlinearity contained in many low-level motion models. For the tasks with static stimuli we found psychometric function slopes (of log d′ versus log luminance plots) between 1.9 and 2.4 in two subjects, as previously reported. For the tasks with apparent motion stimuli in the same range of detectability, however, the slopes are between 1.2 and 1.7. The lower slopes indicate that many low-level motion models are either incorrect or incomplete as currently specified, and changes in nonlinearities and noise placement are discussed.

© 1999 Optical Society of America

OCIS Codes
(330.4060) Vision, color, and visual optics : Vision modeling
(330.4150) Vision, color, and visual optics : Motion detection
(330.5510) Vision, color, and visual optics : Psychophysics
(330.6100) Vision, color, and visual optics : Spatial discrimination
(330.7310) Vision, color, and visual optics : Vision

Citation
Bryan L. Gros, David R. Pope, and Theodore E. Cohn, "Noise location and the slope of the psychometric function for simple motion stimuli," J. Opt. Soc. Am. A 16, 718-727 (1999)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-16-3-718


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. K. Nakayama, “Biological image motion processing: a review,” Vision Res. 25, 625–660 (1985).
  2. A. B. Watson, H. B. Barlow, and J. G. Robson, “What does the eye see best?” Nature (London) 302, 419–422 (1983).
  3. B. L. Gros, D. R. Pope, and T. E. Cohn, “Relative efficiency for the detection of apparent motion,” Vision Res. 36, 2297–2302 (1996).
  4. W. P. Tanner, “Theory of recognition,” J. Opt. Soc. Am. 28, 882–888 (1956).
  5. G. L. Martinsen, B. L. Gros, and T. E. Cohn, “Monochromatic stimuli that are independently processed by the magnocellular and parvocellular pathways,” Invest. Ophthalmol. Visual Sci. Suppl. 39, 163 (1998).
  6. D. J. Lasley and T. E. Cohn, “Why luminance distribution may be better than detection,” Vision Res. 21, 273–278 (1981).
  7. E. H. Adelson and J. R. Bergen, “Spatiotemporal energy models for the perception of motion,” J. Opt. Soc. Am. A 2, 284–299 (1985).
  8. A. B. Watson and A. J. Ahumada, Jr., “Model of human visual-motion sensing,” J. Opt. Soc. Am. A 2, 322–341 (1985).
  9. G. Sclar, J. H. R. Maunsell, and P. Lennie, “Coding of image contrast in central visual pathways of the macaque monkey,” Vision Res. 30, 1–10 (1990).
  10. J. P. H. van Santen and G. Sperling, “Temporal covariance model of human motion perception,” J. Opt. Soc. Am. A 1, 451–473 (1984).
  11. J. P. H. van Santen and G. Sperling, “Elaborated Reichardt detectors,” J. Opt. Soc. Am. A 2, 300–321 (1985).
  12. K. Nakayama and G. H. Silverman, “Detection and discrimination of sinusoidal grating displacements,” J. Opt. Soc. Am. A 2, 267–274 (1985).
  13. D. M. Green and J. A. Swets, Signal Detection Theory and Psychophysics (Peninsula, Los Altos, California, 1966).
  14. W. P. Tanner, “Physiological implications of psychophysical data,” Ann. (N.Y.) Acad. Sci. 89, 752–765 (1961).
  15. W. P. Tanner and J. A. Swets, “A decision making theory of visual detection,” Psychol. Rev. 61, 401–409 (1954).
  16. J. Nachmias and E. C. Kocher, “Visual detection and discrimination of luminance increment,” J. Opt. Soc. Am. 60, 382–389 (1970).
  17. T. E. Cohn, L. N. Thibos, and R. N. Kleinstein, “Detectability of a luminance increment,” J. Opt. Soc. Am. 64, 1321–1327 (1974).
  18. T. E. Cohn and D. J. Lasley, “Spatial summation of foveal increments and decrements,” Vision Res. 15, 389–399 (1975).
  19. J. Nachmias and R. V. Sansbury, “Grating contrast: discrimination may be better than detection,” Vision Res. 14, 1039–1042 (1974).
  20. G. E. Legge and J. M. Foley, “Contrast masking in human vision,” J. Opt. Soc. Am. 70, 1458–1471 (1980).
  21. H. Wilson, “A transducer function for threshold and suprathreshold spatial vision,” Biol. Cybern. 38, 171–178 (1980).
  22. G. E. Legge, “Binocular contrast summation—I. detection and discrimination,” Vision Res. 24, 373–383 (1984).
  23. O. J. Braddick, “Low-level and high-level processes in apparent motion,” Philos. Trans. R. Soc. London Ser. B 290, 137–151 (1980).
  24. C. L. Baker and O. J. Braddick, “Temporal properties of the short-range process in apparent motion,” Perception 14, 181–192 (1985).
  25. J. T. Petersik, “The two-process distinction in apparent motion,” Psychol. Bull. 106, 107–127 (1989).
  26. N. A. Macmillan and C. D. Creelman, Detection Theory: A Users’ Guide (Cambridge University, Cambridge, UK, 1991).
  27. L. T. Maloney, “Confidence intervals for the parameters of psychometric functions,” Percept. Psychophys. 47, 127–134 (1990).
  28. T. E. Cohn and D. J. Lasley, “Site of the accelerating nonlinearity underlying luminance change detection,” J. Opt. Soc. Am. A 2, 202–205 (1985).
  29. J. Thorson, G. D. Lange, and M. Biederman-Thorson, “Objective measure of the dynamics of a visual movement illusion,” Science 164, 1087–1088 (1969).
  30. D. H. Foster, J. Thorson, J. T. McIlwain, and M. Biederman-Thorson, “The fine-grain movement illusion: a perceptual probe of neuronal connectivity in the human visual system,” Vision Res. 21, 1123–1128 (1981).
  31. J. Allik and A. Pulver, “Contrast response of a movement-encoding system,” J. Opt. Soc. Am. A 12, 1185–1197 (1995).
  32. A. Johnston and M. J. Wright, “Lower thresholds of motion for gratings as a function of eccentricity and contrast,” Vision Res. 25, 179–185 (1985).
  33. M. E. Edwards, D. R. Badcock, and S. Nishida, “Contrast sensitivity of the motion system,” Vision Res. 36, 2411–2421 (1996).
  34. R. C. Emerson, J. R. Bergen, and E. H. Adelson, “Directionally selective complex cells and the computation of motion energy in cat visual cortex,” Vision Res. 32, 203–218 (1992).
  35. D. J. Heeger, “Modeling simple-cell direction selectivity with normalized, half-squared linear operators,” J. Neurophysiol. 70, 1885–1898 (1993).
  36. R. C. Emerson, J. R. Bergen, and E. H. Adelson, “Quadrature subunits in directionally selective simple cells: spatiotemporal interactions,” Visual Neurosci. 14, 357–371 (1997).
  37. A. Rose, “The sensitivity performance of the human eye on an absolute scale,” J. Opt. Soc. Am. 38, 196–208 (1948).
  38. W. S. Geisler, “Physical limits of acuity and hyperacuity,” J. Opt. Soc. Am. A 1, 775–782 (1984).
  39. H. B. Barlow, “Increment thresholds at low intensities considered as signal/noise discriminations,” J. Physiol. (London) 136, 469–488 (1957).
  40. M. C. Teich, P. R. Prucnal, G. Vannucci, M. E. Breton, and W. J. McGill, “Multiplication noise in the human visual system at threshold 1: quantum fluctuations and minimal detectable energy,” J. Opt. Soc. Am. 72, 419–431 (1982).
  41. G. Legge, D. Kersten, and A. E. Burgess, “Contrast discrimination in noise,” J. Opt. Soc. Am. A 4, 391–404 (1987).
  42. D. R. Pope, E. P. Hornstein, B. L. Gros, and T. E. Cohn, “Sources of visual noise in human observers at low scotopic light levels,” Invest. Ophthalmol. Visual Sci. Suppl. 36, 905 (1995).
  43. T. Cohn and D. Lasley, “Visual sensitivity,” Annu. Rev. Psychol. 37, 495–521 (1986).
  44. G. Mather, “Computational modeling of motion detectors: responses to two-frame displays,” Spatial Vision 5, 1–14 (1990).
  45. W. Reichardt, “Autocorrelation, a principle for the sensory evaluation of sensory information by the central nervous system,” in Sensory Communication, W. A. Rosenblith, ed. (MIT Press, Cambridge, Mass., 1961), pp. 303–317.
  46. M. Egelhaaf, A. Borst, and W. Reichardt, “Computational structure of a biological motion-detection system as revealed by local detector analysis in the fly’s nervous system,” J. Opt. Soc. Am. A 6, 1070–1087 (1989).
  47. B. L. Gros, T. E. Cohn, and D. R. Pope, “Direction discrimination efficiency on a small scale,” Invest. Ophthalmol. Visual Sci. Suppl. 35, 1270 (1994).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited