OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Vol. 16, Iss. 5 — May. 1, 1999
  • pp: 1016–1025

Maximum a posteriori estimation of fixed aberrations, dynamic aberrations, and the object from phase-diverse speckle data

Brian J. Thelen, Richard G. Paxman, David A. Carrara, and John H. Seldin  »View Author Affiliations


JOSA A, Vol. 16, Issue 5, pp. 1016-1025 (1999)
http://dx.doi.org/10.1364/JOSAA.16.001016


View Full Text Article

Enhanced HTML    Acrobat PDF (666 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In phase-diverse speckle imaging one collects a time series of phase-diversity image sets that are used to jointly estimate the object and each of the phase-aberration functions. Current approaches model the total phase aberration in some deterministic parametric fashion. For many imaging schemes, however, additional information can be exploited. Specifically, the total aberration function consists of the fixed aberrations combined with dynamic (time-varying), turbulence-induced aberrations, about whose stochastic behavior we often have some knowledge. One important example is that in which the wave-front phase error corresponds to Kolmogorov turbulence. In this context using the extra statistical information available may be a powerful aid in the joint aberration/object estimation. In addition, such a framework provides an attractive method for calibrating fixed aberrations in an imaging system. The discipline of Bayesian statistical inference provides a natural framework for using the stochastic information regarding the wave fronts. Here one imposes an a priori probability distribution on the turbulence-induced wave fronts. We present the general Bayesian approach for the joint-estimation problem of fixed aberrations, dynamic aberrations, and the object from phase-diverse speckle data that leads to a maximum a posteriori estimator. We also present results based on simulated data, which show that the Bayesian approach provides an increase in accuracy and robustness for this joint estimation.

© 1999 Optical Society of America

OCIS Codes
(100.3020) Image processing : Image reconstruction-restoration

History
Original Manuscript: November 3, 1998
Manuscript Accepted: January 19, 1999
Published: May 1, 1999

Citation
Brian J. Thelen, Richard G. Paxman, David A. Carrara, and John H. Seldin, "Maximum a posteriori estimation of fixed aberrations, dynamic aberrations, and the object from phase-diverse speckle data," J. Opt. Soc. Am. A 16, 1016-1025 (1999)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-16-5-1016


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. G. Paxman, T. J. Schulz, J. R. Fienup, “Phase-diverse speckle interferometry,” in Signal Recovery and Synthesis IV, Vol. 11 of 1992 Tech. Dig. Ser.-Opt. Soc. Am. (Optical Society of America, Washington, D.C., 1992), pp. 5–7.
  2. J. H. Seldin, R. G. Paxman, “Phase-diverse speckle reconstruction of solar data,” in Image Reconstruction and Restoration, T. J. Schulz, D. L. Snyder, eds., Proc. SPIE2302, 268–280 (1994). [CrossRef]
  3. R. A. Gonsalves, R. Chidlaw, “Wavefront sensing by phase retrieval,” in Applications of Digital Image Processing III, A. G. Tescher, ed., Proc. SPIE207, 32–39 (1979). [CrossRef]
  4. R. G. Paxman, T. J. Schulz, J. R. Fienup, “Joint estimation of object and aberrations by using phase diversity,” J. Opt. Soc. Am. A 9, 1072–1085 (1992). [CrossRef]
  5. R. G. Paxman, J. H. Seldin, M. G. Löfdahl, G. B. Scharmer, C. U. Keller, “Evaluation of phase-diversity techniques for solar-image restoration,” Astrophys. J. 467, 1087–1099 (1996). [CrossRef]
  6. J. H. Seldin, R. G. Paxman, B. L. Ellerbroek, “Post-detection correction of compensated imagery using phase-diverse speckle,” in Adaptive Optics, Vol. 23 of 1995 Tech. Dig. Ser.-Opt. Soc. Am., M. Cullum, ed. (Optical Society of America, Washington, D.C., 1995) pp. 471–476.
  7. J. H. Seldin, M. F. Reiley, R. G. Paxman, B. E. Stribling, B. L. Ellerbroek, D. C. Johnston, “Space-object identification using phase-diverse speckle,” in Image Reconstruction and Restoration II, T. Schulz, ed., Proc. SPIE3170, 2–15 (1997). [CrossRef]
  8. J. H. Seldin, R. G. Paxman, B. L. Ellerbroek, D. C. Johnston, “Phase-diverse speckle restorations of artificial satellites imaged with adaptive-optics compensation,” in Adaptive Optics, Vol. 13 of 1996 Tech. Dig. Ser.-Opt. Soc. Am. (Optical Society of America, Washington, D.C., 1996), addendum, pp. 341–343.
  9. R. G. Paxman, J. H. Seldin, “Fine-resolution imaging of solar features using phase-diverse speckle imaging,” in Real Time and Post-Facto Solar Image Correction, R. R. Raddick, ed., National Solar Observatory/Sacramento Peak Summer Workshop13 (Sunspot, N.M., 1992), pp. 112–118.
  10. T. J. Schulz, “Multi-frame blind deconvolution of astronomical images,” J. Opt. Soc. Am. A 10, 1064–1073 (1993). [CrossRef]
  11. D. L. Snyder, C. W. Helstrom, A. D. Lanterman, M. Faisal, R. L. White, “Compensation for readout noise in CCD images,” J. Opt. Soc. Am. A 12, 272–283 (1995). [CrossRef]
  12. H. L. Van-Trees, Detection, Estimation, and Modulation Theory: Part I (Wiley, New York, 1968).
  13. L. L. Scharf, Statistical Signal Processing: Detection, Estimation, and Time Series Analysis (Addison-Wesley, Reading, Mass., 1991).
  14. D. C. Liu, J. Nocedal, “On the limited memory BFGS method for large scale optimization,” Math. Program. 45, 503–528 (1989). [CrossRef]
  15. D. L. Fried, “Optical resolution through a randomly inhomogeneous medium for very long and very short exposures,” J. Opt. Soc. Am. 56, 1372–1379 (1966). [CrossRef]
  16. R. G. Paxman, J. H. Seldin, P. P. Sanchez, “Applied phase diversity,” [Environmental Research Institute of Michigan (ERIM), Ann Arbor, Mich., 1992].
  17. J. E. Dennis, R. B. Schnabel, Numerical Methods for Unconstrained Optimization and Nonlinear Equations (Prentice-Hall, Englewood Cliffs, N.J., 1983).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited