OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Vol. 16, Iss. 7 — Jul. 1, 1999
  • pp: 1623–1637

Parallel image processing based on an evolution equation with anisotropic gain: integrated optoelectronic architectures

Mikhail A. Vorontsov  »View Author Affiliations

JOSA A, Vol. 16, Issue 7, pp. 1623-1637 (1999)

View Full Text Article

Acrobat PDF (2101 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Algorithms and integrated optoelectronic architectures for parallel image processing and adaptive optics applications are proposed and analyzed. Image processing is performed on the basis of an evolution equation with anisotropic gain that is introduced. The key components of the image-processing scheme are a coherent optical system for on-the-fly image-edge detection and an analog very large scale integration system for parallel implementation of the evolution equation with anisotropic gain. Examples of video data processing for edge enhancement, imaging through turbulent media, depth estimation from visual data, and motion tracking are presented.

© 1999 Optical Society of America

OCIS Codes
(010.1080) Atmospheric and oceanic optics : Active or adaptive optics
(100.0100) Image processing : Image processing
(200.0200) Optics in computing : Optics in computing

Mikhail A. Vorontsov, "Parallel image processing based on an evolution equation with anisotropic gain: integrated optoelectronic architectures," J. Opt. Soc. Am. A 16, 1623-1637 (1999)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. B. Javidi and J. L. Horner, eds., Real-Time Optical Information Processing (Academic, New York, 1994); P. R. Barbier and G. Moddel, “Spatial light modulators: processing light in real time,” 8(3), 16–21 (1997).
  2. C. A. Mead, Analog VLSI and Neural Systems (Addison-Wesley, Reading, Mass., 1989); C. Koch, and H. Li, eds., Vision Chips: Implementing Vision Algorithms with Analog VLSI Circuits (IEEE Computer Society Press, Los Alamitos, Calif., 1994); A. Moini, “Vision chips or seeing silicon,” Tech. Rep. (Centre for High Performance Integrated Technologies and Systems, The University of Adelaide, Adelaide, Australia, 1997) (http://www.eleceng.adelaide.edu.au/Groups/GAAS/Bugeye/visionchips/vision_chips).
  3. T. M. Bernard, ed., Advanced Focal Plane Processing and Electronic Cameras, Proc. SPIE 2950, (1996); S. Decker, R. D. McGrath, and C. G. Sodini, “A 256×256 CMOS imaging array with wide dynamic range pixels and column-parallel digital output,” IEEE J. Solid-State Circuits 33, 2081–2091 (1998).
  4. J. C. Russ, The Image Processing Handbook, 3rd ed. (CRC Press/IEEE Press, London, 1998); K. R. Castleman, Digital Image Processing (Prentice-Hall, New York, 1995).
  5. A. Moini, A. Bouzerdoum, K. Eshraghian, A. Yakovleff, X. T. Nguyen, A. Blanksby, R. Beare, D. Abbott, and R. E. Bogner, “An insect vision-based motion detection chip,” IEEE J. Solid-State Circuits 32, 279–284 (1997).
  6. T. Delbrück, “A chip that focuses an image on itself,” in Proceedings of the workshop on Analog Integrated Neural Systems, Analog VLSI Implementation of Neural Systems, C. Mead and M. Ismail, eds. (Kluwer Academic, Boston, 1989), pp. 171–188.
  7. G. Andreou and K. A. Boahen, “Translinear circuits in subthreshold MOS,” Analog Integr. Circuits Signal Process. 9, 141–166 (1996).
  8. U. Efron, ed., Spatial Light Modulator Technology: Materials, Devices, and Applications (Marcel Dekker, New York, 1995).
  9. Bart M. ter Haar Romey, ed., Geometry-Driven Diffusion in Computer Vision (Kluwer Academic, Dordrecht, The Netherlands, 1994).
  10. “Partial Differential Equations and Geometry-Driven Diffusion in Image Processing and Analysis” special issue of IEEE Trans. Image Process. 7(3), (1998).
  11. M. Proesmans, E. Pauwels, and L. Van Gool, “Coupled geometry-driven diffusion equations for low-level vision,” in Geometry-Driven Diffusion in Computer Vision, Bart M. ter Haar Romey, ed. (Kluwer Academic, Dordrecht, The Netherlands, 1994), pp. 191–198.
  12. D. Mumford and J. Shah, “Optimal approximations by piecewise smooth functions and associated variational problems,” Commun. Pure Appl. Math. 42, 577–685 (1989).
  13. D. Terzopoulos, “Regularization of inverse visual problems involving discontinuities,” IEEE Trans. Pattern. Anal. Mach. Intell. 8, 413–424 (1981).
  14. P. Perona and J. Malik, “Scale space and edge detection using anisotropic diffusion,” IEEE Trans. Pattern. Anal. Mach. Intell. 12, 629–630 (1990).
  15. F. Catte, P. Lions, J. Morel, and T. Coll, “Image selective smoothing and edge detection by nonlinear diffusion,” SIAM J. Numer. Anal. 29, 182–193 (1992).
  16. W. Bair and C. Koch, “An analog VLSI chip for finding edges from zero-crossing,” Neural Inf. Process. Syst. 3, 399–405 (1991).
  17. K. M. Johnson, D. J. McKnight, and I. Underwood, “Smart spatial light modulators using liquid crystals on silicon,” IEEE J. Quantum Electron. 2, 699–714 (1993); S. Serati, G. Sharp, R. Serati, D. McKnight, and J. Stookley, “128 128 analog liquid crystal spatial light modulator,” in Optical Pattern Recognition VI, D. P. Casasent and T. Chao, eds., Proc. SPIE 2490, 378–387 (1995); http://www.bnonlinear.com/
  18. M. C. Roggeman, V. M. Bright, B. M. Welsh, S. R. Hick, P. C. Roberts, W. D. Cowan, and J. H. Comtois, “Use of micro-electro-mechanical deformable mirrors to control aberrations in optical systems: theoretical and experimental results,” Opt. Eng. 36, 1326–1338 (1997).
  19. R. P. Lippmann and D. S. Touretzky, eds., Neural Information Processing Systems 3 (Morgan Kaufmann, San Mateo, Calif., 1995).
  20. J. Gourlay, A. O’Hara, A. J. Stevens, and D. G. Vass, “A comparative investigation into planarized liquid crystal over silicon spatial light modulators,” J. Mod. Opt. 43, 181– 198 (1996); http://www.ph.ed.ac.uk/optics/research/slm. html
  21. M. C. Roggemann and B. M. Welsh, Imaging through Turbulence (CRC Press, Boca Raton, Fla., 1996).
  22. D. L. Fried, “Anisoplanatism in adaptive optics,” J. Opt. Soc. Am. 72, 52–61 (1982); B. M. Welsh and C. S. Gardner, “Effects of turbulence-induced anisoplanatism on the imaging performance of adaptive-astronomical telescopes using laser guide stars,” J. Opt. Soc. Am. A 8, 69–80 (1991).
  23. G. W. Carhart and M. A. Vorontsov, “Synthetic imaging: nonadaptive anisoplanatic image correction in atmospheric turbulence,” Opt. Lett. 23, 745–747 (1998).
  24. “Atmospheric Compensation Technology” (special issues in J. Opt. Soc. Am. 11(1) and (2) (1994); R. K. Tyson, Principles of Adaptive Optics (Academic, San Diego, Calif., 1991).
  25. M. A. Vorontsov, G. W. Carhart, D. V. Pruidze, J. C. Ricklin, and D. G. Voelz, “Adaptive imaging system for phase-distorted extended source and multiple-distance objects,” Appl. Opt. 36, 3319–3328 (1997).
  26. M. A. Vorontsov and V. P. Sivokon, “Stochastic parallel-gradient-descent technique for high-resolution wave-front phase-distortion correction,” J. Opt. Soc. Am. A 15, 2745–2758 (1998).
  27. D. L. Fried, “Probability of getting a lucky short-exposure image through turbulence,” J. Opt. Soc. Am. 68, 1651–1658 (1979).
  28. M. C. Roggemann, C. A. Stoudt, and B. M. Welsh, “Image spectrum signal-to-noise ratio improvement by statistical frame selection for adaptive optics imaging through atmospheric turbulence,” Opt. Eng. 33, 3254–3264 (1994).
  29. O. Faugeras, Three-Dimensional Computer Vision (MIT Press, Cambridge, Mass., 1993).
  30. M. M. Trivedi, Image Processing and Analysis (Van Nostrand Reinhold, New York, 1992).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited