OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Vol. 16, Iss. 7 — Jul. 1, 1999
  • pp: 1703–1714

Electromagnetic waves in finite superlattices with buffer and cap layers

M. L. H. Lahlaouti, A. Akjouj, B. Djafari-Rouhani, L. Dobrzynski, M. Hammouchi, E. H. El Boudouti, and A. Nougaoui  »View Author Affiliations

JOSA A, Vol. 16, Issue 7, pp. 1703-1714 (1999)

View Full Text Article

Enhanced HTML    Acrobat PDF (371 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We investigated the propagation of electromagnetic waves in a finite superlattice bounded by a substrate and vacuum and separated from them by a buffer layer and a cap layer. In this realistic geometry, we show the existence of different kinds of localized and resonant modes whose behaviors are strongly dependent on the nature and thickness of the buffer and cap layers as well as on the width of the superlattice. These modes can be confined inside the superlattice or at its boundaries and give rise to different possibilities for the guidance of optical waves. The localized and resonant modes are obtained from an analytic calculation of the local and total densities of states within a Green’s function formalism for electromagnetic waves of s-polarization (transverse electric). We also evaluate the reflection and transmission coefficients and compare their behaviors with the densities of states.

© 1999 Optical Society of America

OCIS Codes
(230.4170) Optical devices : Multilayers
(230.7400) Optical devices : Waveguides, slab
(240.6690) Optics at surfaces : Surface waves
(310.6860) Thin films : Thin films, optical properties

Original Manuscript: December 9, 1998
Revised Manuscript: March 17, 1999
Manuscript Accepted: March 17, 1999
Published: July 1, 1999

M. L. H. Lahlaouti, A. Akjouj, B. Djafari-Rouhani, L. Dobrzynski, M. Hammouchi, E. H. El Boudouti, and A. Nougaoui, "Electromagnetic waves in finite superlattices with buffer and cap layers," J. Opt. Soc. Am. A 16, 1703-1714 (1999)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. See, for example, Highlights in Condensed Matter Physics and Future Prospects, L. Esaki, ed. (Plenum, New York1991).
  2. A. Yariv, P. Yeh, Optical Waves in Crystals (Wiley, New York, 1984), pp. 155–219; P. Yeh, Optical Waves in Layered Media (Wiley, New York, 1988).
  3. L. H. Qin, Y. D. Zheng, R. Zhang, “Study of GexSi1-x/Si superlattices by ellipsometry,” Appl. Phys. A: Solids Surf. 55, 297–300 (1992). [CrossRef]
  4. T. Hattori, N. Tsurumachi, S. Kawato, H. Nakatsuka, “Photonic dispersion relation in a one-dimensional quasi-crystal,” Phys. Rev. B 50, 4220–4223 (1994). [CrossRef]
  5. D. R. Smith, R. Dalichaouch, N. Kroll, S. Schultz, S. L. McCall, P. M. Platzman, “Photonic band structure and defects in one and two dimensions,” J. Opt. Soc. Am. B 10, 314–321 (1993). [CrossRef]
  6. J. P. Dowling, C. M. Bowden, “Anomalous index of refraction in photonic bandgap materials,” J. Mod. Opt. 41, 345–351 (1994). [CrossRef]
  7. R. D. Meade, K. D. Brommer, A. M. Rapper, J. D. Joannopoulos, “Electromagnetic Bloch waves at the surface of a photonic crystal,” Phys. Rev. B 44, 10961–10964 (1991). [CrossRef]
  8. P. Yeh, A. Yariv, C. S. Hong, “Electromagnetic propagation in periodic stratified media: I. General theory,” J. Opt. Soc. Am. 67, 423–438 (1977). [CrossRef]
  9. P. Yeh, A. Yariv, A. Y. Cho, “Optical surface waves in periodic layered media,” Appl. Phys. Lett. 32, 104–105 (1978). [CrossRef]
  10. W. Ng, P. Yeh, P. C. Chen, A. Yariv, “Optical surface waves in periodic layered medium grown by liquid phase epitaxy,” Appl. Phys. Lett. 32, 370–371 (1978). [CrossRef]
  11. A. A. Bulgakov, V. R. Kovtun, “Surface optical oscillations in a limited stratified-periodic medium,” Opt. Spectrosc. 56, 269–274 (1984).
  12. A. A. Bulgakov, V. R. Kovtun, “Study of surface optical oscillations in periodical multilayer media,” Solid State Commun. 56, 781–785 (1985). [CrossRef]
  13. X. I. Saldana, G. Gonzalez de la Cruz, “Electromagnetic surface waves in semi-infinite superlattices,” J. Opt. Soc. Am. A 8, 36–40 (1991). [CrossRef]
  14. M. L. Bah, A. Akjouj, E. H. El Boudouti, B. Djafari-Rouhani, L. Dobrzynski, “Surface and interface optical waves in superlattices: transverse electric localized and resonant modes,” J. Phys. Condens. Matter 8, 4171–4188 (1996). [CrossRef]
  15. F. Ramos-Mendieta, P. Halevi, “Electromagnetic surface modes of a dielectric superlattice: the supercell method,” J. Opt. Soc. Am. B 14, 370–381 (1997). [CrossRef]
  16. Y. F. Li, J. W. Y. Lit, “General formulas for the guiding properties of a multilayer slab waveguide,” J. Opt. Soc. Am. A 4, 671–677 (1987). [CrossRef]
  17. T. Hattori, N. Tsurumachi, H. Nakatsuka, “Analysis of optical nonlinearity by defect states in one-dimensional photonic crystals,” J. Opt. Soc. Am. B 14, 348–355 (1997). [CrossRef]
  18. R. Wang, J. Dong, D. Y. Xing, “Defect studies in a one-dimensional photonic band gap structure,” Phys. Status Solidi B 200, 529–534 (1997). [CrossRef]
  19. E. Yablonovitch, T. J. Gmitter, R. D. Meade, A. M. Rappe, K. D. Brommer, J. D. Joannopoulos, “Donor and acceptor modes in photonic band structure,” Phys. Rev. Lett. 67, 3380–3383 (1991). [CrossRef] [PubMed]
  20. M. Sigalas, C. M. Soukoulis, E. N. Economou, C. T. Chan, K. M. Ho, “Photonic band gaps and defects in two dimensions: studies of the transmission coefficient,” Phys. Rev. B 48, 14121–14126 (1993). [CrossRef]
  21. A. Mekis, J. C. Chen, I. Kurland, S. Fan, P. R. Villeneuve, J. D. Joannopoulos, “High transmission through sharp bends in photonic crystal waveguides,” Phys. Rev. Lett. 77, 3787–3790 (1996). [CrossRef] [PubMed]
  22. E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987). [CrossRef] [PubMed]
  23. M. D. Tocci, M. Scalora, M. J. Bloemer, J. P. Dowling, C. M. Bowden, “Measurement of spontaneous-emission enhancement near the one-dimensional photonic band edge of semiconductor heterostructure,” Phys. Rev. A 53, 2799–2803 (1996). [CrossRef] [PubMed]
  24. Y. F. Li, K. Iizuka, J. W. Y. Lit, “Periodic stratified structure in a multilayer planar optical waveguide,” J. Opt. Soc. Am. A 9, 559–568 (1992). [CrossRef]
  25. L. Dobrzynski, “Interface response theory of discrete composite systems,” Surf. Sci. Rep. 6, 119–157 (1986);“Interface response theory of continuous composite systems,” Surf. Sci. Rep. 11, 139–178 (1990). [CrossRef]
  26. M. G. Cottam, A. A. Maradudin, “Surface linear response functions” in Surface Excitations, V. M. Agranovich, R. Loudon, eds. (Mod. Probl. Condens. Matter Sci.9) (North-Holland, Amsterdam, 1986), pp. 5–20.
  27. M. L. Bah, A. Akjouj, L. Dobrzynski, “Response functions in layered dielectric media,” Surf. Sci. Rep. 16, 95–132 (1992). [CrossRef]
  28. J. M. Bendickson, J. P. Dowling, M. Scalora, “Analytic expressions for the electromagnetic mode density in finite, one dimensional, photonic band-gap structures,” Phys. Rev. E 53, 4107–4121 (1996). [CrossRef]
  29. E. N. Economou, Green’s Functions in Quantum Physics (Spring-Verlag, Heidelberg, 1990), pp. 3–18.
  30. R. D. Meade, K. D. Brommer, A. M. Rappe, “Photonic bound states in periodic dielectric materials,” Phys. Rev. B 44, 13772–13774 (1991). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited