OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Vol. 17, Iss. 1 — Jan. 1, 2000
  • pp: 53–62

Branch-point reconstruction in laser beam projection through turbulence with finite-degree-of-freedom phase-only wave-front correction

Michael C. Roggemann and Alan C. Koivunen  »View Author Affiliations


JOSA A, Vol. 17, Issue 1, pp. 53-62 (2000)
http://dx.doi.org/10.1364/JOSAA.17.000053


View Full Text Article

Acrobat PDF (401 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Wave-front sensing and deformable mirror control algorithms in adaptive optics systems are designed on the premise that a continuous phase function exists in the telescope pupil that can be conjugated with a deformable mirror for the purpose of projecting a laser beam. However, recent studies of coherent wave propagation through turbulence have shown that under conditions where scintillation is not negligible, a truly continuous phase function does not in general exist as a result of the presence of branch points in the complex optical field. Because of branch points and the associated branch cuts, least-squares wave-front reconstruction paradigms can have large errors. We study the improvement that can be obtained by implementing wave-front reconstructors that can sense the presence of branch points and reconstruct a discontinuous phase function in the context of a laser beam projection system. This study was conducted by fitting a finite-degree-of-freedom deformable mirror to branch-point and least-squares reconstructions of the phase of the beacon field, propagating the corrected field to the beacon plane, and evaluating performance in the beacon plane. We find that the value of implementing branch-point reconstructors with a finite-degree-of-freedom deformable mirror is significant for optical paths that cause saturated log-amplitude fluctuations.

© 2000 Optical Society of America

OCIS Codes
(010.1080) Atmospheric and oceanic optics : Active or adaptive optics
(010.1300) Atmospheric and oceanic optics : Atmospheric propagation
(010.1330) Atmospheric and oceanic optics : Atmospheric turbulence

Citation
Michael C. Roggemann and Alan C. Koivunen, "Branch-point reconstruction in laser beam projection through turbulence with finite-degree-of-freedom phase-only wave-front correction," J. Opt. Soc. Am. A 17, 53-62 (2000)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-17-1-53

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited