OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Vol. 17, Iss. 10 — Oct. 1, 2000
  • pp: 1732–1743

Noninterferometric quantitative phase imaging with soft x rays

Brendan E. Allman, Phillip J. McMahon, Justine B. Tiller, Keith A. Nugent, David Paganin, Anton Barty, Ian McNulty, Sean P. Frigo, Yuxin Wang, and Cornelia C. Retsch  »View Author Affiliations

JOSA A, Vol. 17, Issue 10, pp. 1732-1743 (2000)

View Full Text Article

Acrobat PDF (1769 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We demonstrate quantitative noninterferometric x-ray phase–amplitude measurement. We present results from two experimental geometries. The first geometry uses x rays diverging from a point source to produce high-resolution holograms of submicrometer-sized objects. The measured phase of the projected image agrees with the geometrically determined phase to within ±7%. The second geometry uses a direct imaging microscope setup that allows the formation of a magnified image with a zone-plate lens. Here a direct measure of the object phase is made and agrees with that of the magnified object to better than ±10%. In both cases the accuracy of the phase is limited by the pixel resolution.

© 2000 Optical Society of America

OCIS Codes
(070.0070) Fourier optics and signal processing : Fourier optics and signal processing
(090.0090) Holography : Holography
(100.0100) Image processing : Image processing
(100.5070) Image processing : Phase retrieval
(110.7440) Imaging systems : X-ray imaging
(120.5050) Instrumentation, measurement, and metrology : Phase measurement
(180.7460) Microscopy : X-ray microscopy

Brendan E. Allman, Phillip J. McMahon, Justine B. Tiller, Keith A. Nugent, David Paganin, Anton Barty, Ian McNulty, Sean P. Frigo, Yuxin Wang, and Cornelia C. Retsch, "Noninterferometric quantitative phase imaging with soft x rays," J. Opt. Soc. Am. A 17, 1732-1743 (2000)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. W. C. Röntgen, “On a new kind of rays,” Nature 53, 274–276 (1896).
  2. B. X. Yang, J. Kirz, and T. K. Sham, “Oxygen K-edge extended x-ray-absorption fine-structure studies of molecules containing oxygen and carbon atoms,” Phys. Rev. A 36, 4298–4310 (1987); J. Kirz, C. Jacobsen, and M. Howells, “Soft x-ray microscopes and their biological applications,” Q. Rev. Biophys. 28, 33–130 (1995).
  3. G. Schmahl, D. Rudolf, and P. Guttmann, “Phase contrast x-ray microscopy experiments at the BESSY storage ring,” in X-Ray Microscopy II, D. Sayre, M. Howells, J. Kirz, and H. Rarback, eds., Vol. 56 of Springer Series in Optical Science (Springer-Verlag, Berlin, 1988), pp. 228–232; G. Schmahl, D. Rudolph, G. Schneider, P. Guttman, and B. Niemann, “Phase contrast x-ray microscopy studies,” Optik (Stuttgart), 97, 181–182 (1994).
  4. J. E. Trebes, S. B. Brown, E. M. Campbell, D. L. Matthews, D. G. Nilson, G. F. Stone, and D. A. Whelan, “Demonstration of x-ray holography with an x-ray laser,” Science 238, 517–519 (1987); J. E. Trebes, K. A. Nugent, S. Mrowka, R. A. London, T. W. Barbee, M. R. Carter, J. A. Koch, B. J. MacGowan, D. L. Matthews, L. B. DaSilva, G. F. Stone, and M. D. Feit, “Measurement of the spatial coherence of a soft-x-ray laser,” Phys. Rev. Lett. 68, 588–591 (1992); K. A. Nugent and J. E. Trebes, “Coherence measurement technique for short-wavelength light source,” Rev. Sci. Instrum. RSINAK 63, 2146–2151 (1992).
  5. K. A. Nugent, “Signal to noise ratio in soft x-ray holography,” J. Mod. Opt. 38, 553 (1991).
  6. G. Schmahl, P. Guttmann, G. Schneider, B. Niemann, C. David, T. Wilhein, J. Thieme, and D. Rudolph, “Phase contrast studies of hydrated specimens with the x-ray microscope at BESSY,” in X-Ray Microscopy IV, A. Erko and V. Aristov, eds. (Bogorodski Pechatnik, Chernogolovka, Moscow Region, 1994), pp. 196–206.
  7. C. Jacobsen, M. Howells, J. Kirz, and S. Rothman, “X-ray holographic microscopy using photoresist,” J. Opt. Soc. Am. A 7, 1847–1861 (1990).
  8. K. A. Nugent, T. E. Gureyev, D. Cookson, D. Paganin, and Z. Barnea, “Quantitative phase imaging using hard x-rays,” Phys. Rev. Lett. 77, 2961–2964 (1996).
  9. See, for example, Advanced Photon Source, http://aps.anl.gov; European Synchrotron Radiation Facility, http://www.esrf.fr; Super Photon Ring, http://www.spring8.or.jp.
  10. E. Forster, K. Goetz, and P. Zaumseil, “Double crystal diffractometry for the characterization of targets for laser-fusion experiments,” Krist. Tech. 15, 937–945 (1980).
  11. T. J. Davis, T. E. Gureyev, D. Gao, A. W. Stevenson, and S. W. Wilkins, “X-ray image contrast from a simple phase object,” Phys. Rev. Lett. 74, 3173–3176 (1995); T. J. Davis, D. Gao, T. E. Gureyev, A. W. Stevenson, and S. W. Wilkins, “Phase-contrast imaging of weakly absorbing materials using hard x-rays,” Nature 373, 595–598 (1995).
  12. S. W. Wilkins, T. E. Gureyev, D. Gao, A. Pogany, and A. W. Stevenson, “Phase-contrast imaging using polychromatic hard x-rays,” Nature 384, 335–338 (1996).
  13. A. Snigirev, I. Snigireva, V. Kohn, S. Kuznetsov, and I. Schelokov, “On the possibilities of x-ray phase contrast microimaging by coherent high-energy synchrotron radiation,” Rev. Sci. Instrum. 66, 5486–5492 (1995).
  14. P. Cloetens, R. Barrett, J. Baruchel, J.-P. Guigay, and M. Schlenker, “Phase objects in synchrotron radiation hard x-ray imaging,” J. Phys. D 29, 133–146 (1996).
  15. A. Momose, T. Takeda, and Y. Itai, “Phase-contrast x-ray computed tomography for observing biological specimens and organic materials,” Rev. Sci. Instrum. 66, 1434–1436 (1995); A. Momose, T. Takeda, Y. Itai, and K. Hirano, “Phase-contrast x-ray microtomography: application to human cancerous tissues,” in X-Ray Microscopy and Spectromicroscopy, J. Thieme, G. Schmahl, D. Rudolph, and E. Umbach, eds. (Springer-Verlag, Berlin, 1998), pp. II-207–II-211.
  16. P. Cloetens, M. Pateyron-Salomé, J.-Y. Buffière, G. Peix, J. Baruchel, F. Peyrin, and M. Schlenker, “Observation of microstructure and damage in materials by phase sensitive radiography and tomography,” J. Appl. Phys. 81, 5878–5886 (1997).
  17. H. Rose, “Nonstandard imaging methods in electron microscopy,” Ultramicroscopy 2, 251–267 (1977).
  18. E. M. Waddel and J. N. Chapman, “Linear imaging of strong phase objects using asymmetrical detectors in STEM,” Optik (Stuttgart) 54, 83–96 (1979).
  19. G. R. Morrison, A. R. Hare, and R. E. Burge, “Transmission microscopy with soft x-rays,” in Proceedings of the Institute of Physics Electron Microscopy and Analysis Group Conference (Institute of Physics, Bristol, UK, 1987), pp. 333–336.
  20. T. Wilson, A. R. Carlini, and C. J. R. Sheppard, “Phase contrast microscopy by nearly full illumination,” Optik (Stuttgart) 70, 166–169 (1985).
  21. R. G. Lane and M. Tallon, “Wave-front reconstruction using a Shack–Hartmann sensor,” Appl. Opt. 31, 6902–6908 (1992).
  22. H. N. Chapman, “Phase-retrieval x-ray microscopy by Wigner-distribution deconvolution,” Ultramicroscopy 66, 153–172 (1996).
  23. P. Schiske, “Image processing using additional statistical information about the object,” in Image Processing and Computer-Aided Design in Electron Optics, P. W. Hawkes, ed. (Academic, New York, 1973), p. 82.
  24. W. Coene, G. Janssen, M. Op de Beeck, and D. Van Dyck, “Phase retrieval through focus variation for ultra-resolution in field-emission transmission electron microscopy,” Phys. Rev. Lett. 69, 3743–3746 (1992).
  25. F. Roddier and C. Roddier, “Wave-front reconstruction using iterative Fourier transforms,” Appl. Opt. 30, 1325–1327 (1991).
  26. V. Yu Ivanov, V. P. Sivokon, and M. A. Vorontsov, “Phase retrieval from a set of intensity measurements,” J. Opt. Soc. Am. A 9, 1515–1524 (1992).
  27. P. Cloetens, W. Ludwig, J. Baruchel, D. Van Dyck, J. Van Landuyt, J. P. Guigay, and M. Schlenker, “Holotomography: quantitative phase tomography with micrometer resolution using hard synchrotron radiation x-rays,” Appl. Phys. Lett. 75, 2912–2914 (1999).
  28. M. R. Teague, “Deterministic phase retrieval: a Green’s function solution,” J. Opt. Soc. Am. 73, 1434–1441 (1983).
  29. T. E. Gureyev, A. Roberts, and K. A. Nugent, “Partially coherent fields, the transport of intensity equation, and phase uniqueness,” J. Opt. Soc. Am. A 12, 1942–1946 (1995).
  30. K. Ichikawa, A. W. Lohmann, and M. Takeda, “Phase retrieval based on the irradiance transport equation and the Fourier transform method: experiments,” Appl. Opt. 27, 3433–3436 (1988).
  31. D. Paganin and K. A. Nugent, “Noninterferometric phase imaging with partially coherent light,” Phys. Rev. Lett. 80, 2586–2589 (1998).
  32. T. E. Gureyev and K. A. Nugent, “Phase retrieval with the transport-of-intensity equation. II. Orthogonal series solution for nonuniform illumination,” J. Opt. Soc. Am. A 13, 1670–1682 (1996); T. E. Gureyev and K. A. Nugent, “Rapid quantitative phase imaging using the transport of intensity equation,” Opt. Commun. 133, 339–346 (1997).
  33. A. Barty, K. A. Nugent, D. Paganin, and A. Roberts, “Quantitative optical phase microscopy,” Opt. Lett. 23, 817–819 (1998).
  34. See, for example, M. Born and E. Wolf, Principles of Optics, corrected 6th ed. (Cambridge U. Press, Cambridge, UK, 1998), pp. 193–194.
  35. A. Pogany, D. Gao, and S. W. Wilkins, “Contrast and resolution in imaging with a microfocus x-ray source,” Rev. Sci. Instrum. 68, 2774–2782 (1997).
  36. S. Bajt, A. Barty, K. A. Nugent, M. McCartney, M. Wall, and D. Paganin, “Quantitative phase-sensitive imaging in a transmission electron microscope,” Ultramicroscopy 83, 67–73 (2000).
  37. I. McNulty, A. Khounsary, Y. P. Feng, Y. Qian, J. Barraza, C. Benson, and D. Shu, “A beamline for 1–4 keV microscopy and coherence experiments at the Advanced Photon Source,” Rev. Sci. Instrum. 67, 3372 (1996).
  38. D. Gabor, “A new microscopic principle,” Nature (London) 161, 777–778 (1948).
  39. C. Jacobsen, M. Howells, J. Kirz, and S. Rothman, “X-ray holographic microscopy using photoresist,” J. Opt. Soc. Am. A 7, 1847–1861 (1990).
  40. J. B. Tiller, A. Barty, D. Paganin, and K. A. Nugent, “The holographic twin image problem: a deterministic phase solution,” Opt. Commun. (to be published).
  41. See, for example, M. Born and E. Wolf, Principles of Optics, corrected 6th ed. (Cambridge U. Press, Cambridge, UK, 1998), pp. 455–458.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited