OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Vol. 17, Iss. 12 — Dec. 1, 2000
  • pp: 2191–2198

Finite-aperture wire grid polarizers

Michael A. Jensen and Gregory P. Nordin  »View Author Affiliations

JOSA A, Vol. 17, Issue 12, pp. 2191-2198 (2000)

View Full Text Article

Enhanced HTML    Acrobat PDF (384 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The transmission characteristics of wire grid polarizers fabricated in finite apertures are investigated by using a three-dimensional finite-difference time-domain formulation. Specifically, the optical transmissivity and extinction ratio are characterized for a wide variety of geometrical parameters including aperture size in both dimensions, conducting wire fill factor, and polarizer thickness. A dispersive material model is used to investigate the performance of polarizers fabricated by using realistic metals at infrared wavelengths. The results indicate that the aperture dimension significantly impacts the polarizer transmission behavior and that the extinction of the unwanted polarization is often limited by depolarizing scattering that is due to the finite aperture size.

© 2000 Optical Society of America

OCIS Codes
(050.0050) Diffraction and gratings : Diffraction and gratings
(050.1970) Diffraction and gratings : Diffractive optics
(230.0230) Optical devices : Optical devices
(230.3990) Optical devices : Micro-optical devices

Original Manuscript: May 15, 2000
Manuscript Accepted: June 27, 2000
Published: December 1, 2000

Michael A. Jensen and Gregory P. Nordin, "Finite-aperture wire grid polarizers," J. Opt. Soc. Am. A 17, 2191-2198 (2000)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. G. R. Bird, M. Parrish, “The wire grid as a near-infrared polarizer,” J. Opt. Soc. Am. 50, 886–891 (1960). [CrossRef]
  2. J. B. Young, H. A. Graham, E. W. Peterson, “Wire grid infrared polarizer,” Appl. Opt. 4, 1023–1026 (1965). [CrossRef]
  3. M. G. Moharam, T. K. Gaylord, “Rigorous coupled-wave analysis of metallic surface-relief gratings,” J. Opt. Soc. Am. A 3, 1780–1787 (1986). [CrossRef]
  4. E. N. Glytsis, M. G. Moharam, “Rigorous coupled-wave analysis and applications of grating diffraction,” in Diffractive and Miniaturized Optics, S. H. Lee, ed. (SPIE Press, Bellingham, Wash., 1993), Vol. CR49, p. 3–31.
  5. M. G. Moharam, E. B. Grann, D. A. Pommet, T. K. Gaylord, “Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings,” J. Opt. Soc. Am. A 12, 1068–1076 (1995). [CrossRef]
  6. E. Chen, S. Y. Chou, “A novel device for detecting the polarization direction of linear polarized light using integrated subwavelength gratings and photodetectors,” IEEE Photonics Technol. Lett. 9, 1259–1261 (1997). [CrossRef]
  7. J. Guo, D. J. Brady, “Fabrication of high-resolution micropolarizer arrays,” Opt. Eng. 36, 2268–2271 (1997). [CrossRef]
  8. G. P. Nordin, J. T. Meier, P. Deguzman, B. Barbour, M. W. Jones, “Arrays of infrared micropolarizers,” in Diffractive Optics and Micro-Optics, Vol. 10 of 1998 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1998), pp. 133–135.
  9. G. P. Nordin, J. T. Meier, P. C. Deguzman, M. W. Jones, “Micropolarizer array for infrared imaging polarimetry,” J. Opt. Soc. Am. A 16, 1184–1193 (1999). [CrossRef]
  10. K. Hirayama, E. N. Glytsis, T. K. Gaylord, “Rigorous electromagnetic analysis of diffraction by finite-number-of-periods gratings,” J. Opt. Soc. Am. A 14, 907–917 (1997). [CrossRef]
  11. K. Hirayama, E. N. Glytsis, T. K. Gaylord, D. W. Wilson, “Rigorous electromagnetic analysis of diffractive cylindrical lenses,” J. Opt. Soc. Am. A 13, 2219–2231 (1996). [CrossRef]
  12. D. W. Prather, M. S. Mirotznik, J. N. Mait, “Boundary integral methods applied to the analysis of diffractive optical elements,” J. Opt. Soc. Am. A 14, 34–43 (1997). [CrossRef]
  13. E. N. Glytsis, M. E. Harrigtan, K. Hirayama, T. K. Gaylord, “Collimating cylindrical diffractive lenses: rigorous electromagnetic analysis and scalar approximation,” Appl. Opt. 37, 34–43 (1998). [CrossRef]
  14. D. W. Prather, J. N. Mait, M. S. Mirotznik, J. P. Collins, “Vector-based synthesis of finite aperiodic subwavelength diffractive optical elements,” J. Opt. Soc. Am. A 15, 1599–1607 (1998). [CrossRef]
  15. A. Wang, A. Prata, “Lenslet analysis by rigorous vector diffraction theory,” J. Opt. Soc. Am. A 12, 1161–1169 (1995). [CrossRef]
  16. M. Schmitz, O. Bryngdahl, “Rigorous concept for the design of diffractive microlenses with high numerical apertures,” J. Opt. Soc. Am. A 14, 901–906 (1997). [CrossRef]
  17. Y.-K. Kok, “General solution to the multiple-metallic-grooves scattering problem: the fast-polarization case,” Appl. Opt. 32, 2573–2581 (1993). [CrossRef] [PubMed]
  18. Y. S. Kim, H. J. Eom, J. W. Lee, K. Yoshitomi, “Scattering from multiple slits in a thick conducting plane,” Radio Sci. 30, 1341–1347 (1995). [CrossRef]
  19. S. H. Kang, H. J. Eom, T. J. Park, “TM-scattering from a slit in a thick conducting screen: revisited,” IEEE Trans. Microwave Theory Tech. 41, 895–899 (1993). [CrossRef]
  20. K. S. Yee, “Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media,” IEEE Trans. Antennas Propag. AP-14, 302–307 (1966).
  21. A. Taflove, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, Boston, 1995).
  22. M. A. Jensen, Y. Rahmat-Samii, “Performance analysis of antennas for hand-held transceivers using FDTD,” IEEE Trans. Antennas Propag. 42, 1106–1113 (1994). [CrossRef]
  23. M. A. Jensen, G. P. Nordin, “Finite-aperture wire grid polarizers,” (Brigham Young University Microwave Earth Remote Sensing Laboratory, Provo, Utah, 1999) ( http://www.ee.byu.edu/ee/mers/MERS_reports.html ).
  24. O. M. Mendez, M. Cahilhac, R. Petit, “Diffraction of a two-dimensional electromagnetic beam wave by a thick slit pierced in a perfectly conducting screen,” J. Opt. Soc. Am. 73, 328–331 (1983). [CrossRef]
  25. J. B. Judkins, R. W. Ziolkowski, “Finite-difference time-domain modeling of nonperfectly conducting metallic thin-film gratings,” J. Opt. Soc. Am. A 12, 1974–1983 (1995). [CrossRef]
  26. Z. P. Zhang, D. Y. Chu, S. L. Wu, W. G. Bi, R. C. Tiberio, R. M. Joseph, A. Taflove, C. W. Tu, S. T. Ho, “Nanofabrication of 1-D photonic bandgap structures along a photonic wire,” IEEE Photonics Technol. Lett. 8, 491–493 (1996). [CrossRef]
  27. K. M. Dridi, A. Bjarklev, “Optical electromagnetic vector-field modeling for the accurate analysis of finite diffractive structures of high complexity,” Appl. Opt. 38, 1668–1676 (1999). [CrossRef]
  28. H. Y. D. Yang, “Finite difference analysis of 2-D photonic crystal,” IEEE Trans. Microwave Theory Tech. 44, 2688–2695 (1996). [CrossRef]
  29. J.-P. Berenger, “A perfectly matched layer for the absorption of electromagnetic waves,” J. Comput. Phys. 114, 185–200 (1994). [CrossRef]
  30. D. S. Katz, E. T. Thiele, A. Taflove, “Validation and extension to three dimensions of the Berenger PML absorbing boundary condition for FD-TD meshes,” IEEE Microwave Guid. Wave Lett. 4, 268–270 (1994). [CrossRef]
  31. D. R. Lide, ed., CRC Handbook of Chemistry & Physics, 73rd ed. (CRC Press, Boca Raton, Fla., 1992).
  32. B. Stenkamp, M. Abraham, W. Ehrfeld, E. Knapek, M. Hintermaier, M. T. Gale, R. Morf, “Grid polarizer for the visible spectral region,” in Nanofabrication Technologies and Device Integration, W. Karthe, Proc. SPIE2213, 288–296 (1994). [CrossRef]
  33. H. Lochbihler, R. Depine, “Diffraction from highly conducting wire gratings of arbitrary cross-section,” J. Mod. Opt. 40, 1273–1298 (1993). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited