OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Vol. 17, Iss. 12 — Dec. 1, 2000
  • pp: 2199–2207

Structure of an edge-dislocation wave originating in plane-wave diffraction by a half-plane

A. I. Khizhnyak, S. P. Anokhov, R. A. Lymarenko, M. S. Soskin, and M. V. Vasnetsov  »View Author Affiliations


JOSA A, Vol. 17, Issue 12, pp. 2199-2207 (2000)
http://dx.doi.org/10.1364/JOSAA.17.002199


View Full Text Article

Acrobat PDF (967 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A new treatment of the well-known Sommerfeld solution of the problem of plane-wave diffraction from a perfectly conducting half-plane is reported. We show, in both theory and experiment, that the diffraction field (E-polarization) can be represented as a superposition of real physically existing waves, in contrast to geometrical and boundary waves postulated in Sommerfeld’s representation. Our representation includes two pairs of wave components: one pair propagates along the direction of the incident wave, and the other in a mirror-reflected direction. Each wave pair consists of a plane-wave component with an amplitude half that of the incident wave and a nearly plane-wave component with an infinitely extended edge dislocation. On the basis of the proposed interpretation, all features of the half-plane diffraction are explained.

© 2000 Optical Society of America

OCIS Codes
(050.1960) Diffraction and gratings : Diffraction theory

Citation
A. I. Khizhnyak, S. P. Anokhov, R. A. Lymarenko, M. S. Soskin, and M. V. Vasnetsov, "Structure of an edge-dislocation wave originating in plane-wave diffraction by a half-plane," J. Opt. Soc. Am. A 17, 2199-2207 (2000)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-17-12-2199


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. M. Born and E. Wolf, Principles of Optics, 6th ed. (Pergamon, Oxford, UK, 1991).
  2. J. F. Nye, Natural Focusing and Fine Structure of Light: Caustics and Wave Dislocations (Institute of Physics, Bristol, UK, 1999).
  3. S. Wang, “On principles of diffraction,” Optik (Stuttgart) 100, 107–108 (1995).
  4. A. Sommerfeld, “Mathematische Theorie der Diffraction,” Math. Ann. 47, 317–374 (1896).
  5. G. A. Maggi, “Sulla propagazione libera e perturbata delle onde luminose in un mezzo isotropo,” Ann. Mat. 16 (2), 21–48 (1888).
  6. A. Sommerfeld, Optics (Academic, New York, 1954).
  7. A. Rubinowicz, “Die Beugungswelle in der Kirchhoffschten Theorie der Beugungserscheinungen,” Ann. Phys. (Leipzig) 53, 257–258 (1917).
  8. A. Rubinowicz, “Zur Kirchhoffschen Beugungstheorie,” Ann. Phys. (Leipzig) 73, 339–364 (1924).
  9. A. Rubinowicz, “Thomas Young and the theory of diffraction,” Nature (London) 180, 162–164 (1957).
  10. A. Rubinowicz, “Simple derivation of the Miyamoto–Wolf formula for the vector potential associated with a solution of the Helmholtz equation,” J. Opt. Soc. Am. 52, 717–718 (1962).
  11. A. Rubinowicz, Kirchhoff’s Diffraction Theory and Its Interpretation on the Basis of Young’s Views (Polish Academy of Sciences Press, Krakow, 1972).
  12. E. W. Marchand and E. Wolf, “Consistent formulation of Kirchhoff’s diffraction theory,” J. Opt. Soc. Am. 56, 1712–1722 (1966).
  13. K. Miyamoto and E. Wolf, “Generalization of the Maggi–Rubinowicz theory of the boundary diffraction wave—Part I,” J. Opt. Soc. Am. 52, 615–625 (1962).
  14. K. Miyamoto and E. Wolf, “Generalization of the Maggi–Rubinowicz theory of the boundary diffraction wave—Part II,” J. Opt. Soc. Am. 52, 626–637 (1962).
  15. E. W. Marchand and E. Wolf, “Boundary diffraction wave in the domain of the Rayleigh–Kirchhoff diffraction theory,” J. Opt. Soc. Am. 52, 761–767 (1962).
  16. J. W. Y. Lit and R. Tramblay, “Boundary-diffraction-wave theory of cascaded-apertures diffraction,” J. Opt. Soc. Am. 59, 559–567 (1969).
  17. T. Suzuki, “Extension of the theory of the boundary diffraction wave to systems with arbitrary aperture-transmittance function,” J. Opt. Soc. Am. 61, 439–445 (1971).
  18. G. Otis, “Application of the boundary-diffraction-wave theory to Gaussian beams,” J. Opt. Soc. Am. 64, 1545–1550 (1974).
  19. G. Otis, J. L. Lachambre, J. W. Y. Lit, and P. Lavigne, “Diffracted waves in the shadow boundary region,” J. Opt. Soc. Am. 67, 551–553 (1977).
  20. P. Langlois and A. Boivin, “Thomas Young’s ideas on light diffraction in the context of electromagnetic theory,” Can. J. Phys. 63, 265–274 (1985).
  21. R. W. Wood, Physical Optics (Macmillan, New York, 1934).
  22. S. Ganchi, “An experiment on the physical reality of edge-diffracted waves,” Am. J. Phys. 57, 370–373 (1989).
  23. Yu. I. Terentiev, “Diffraction of light on a thin flat screen with the straight edge,” Opt. Atm. 2, 1141–1146 (1989) (in Russian).
  24. Yu. I. Terentiev, “New facts confirming the objective character of the Young’s description of the origin of the diffraction on a screen,” Opt. Atm. 2, 1325–1327 (1989) (in Russian).
  25. V. N. Smirnov and S. A. Strokovskii, “On diffraction of optical Hermite–Gaussian beams from a diaphragm,” Opt. Spektrosk. 76, 1019–1026 (1994) (in Russian).
  26. P. V. Polyanskii, G. V. Polyanskaya, “On a consequence of the Young–Rubinowicz model of diffraction phenomena in holography,” Opt. Appl. 25, 171–183 (1995).
  27. P. V. Polyanskii and G. V. Polyanskaya, “The Young hologram—a fifth type of hologram,” J. Opt. Technol. 64, 321–330 (1997).
  28. J. F. Nye and M. V. Berry, “Dislocations in wave trains,” Proc. Soc. R. London, Sect. A 336, 165–190 (1974).
  29. W. Braunbek and G. Laukien, “Einzelheiten zur Halbebenen-Beugung,” Optik (Stuttgart) 9, 174–179 (1952).
  30. J. D. Barnett and F. S. Harris, “Test of the effect of edge parameters on small-angle Fresnel diffraction of light at a straight edge,” J. Opt. Soc. Am. 52, 637–643 (1962).
  31. I. V. Basistiy, M. S. Soskin, and M. V. Vasnetsov, “Optical wavefront dislocations and their properties,” Opt. Commun. 119, 604–612 (1995).
  32. G. Duree, M. Morin, G. Salamo, M. Segev, B. Crosignani, P. Di Porto, E. Sharp, and A. Yariv, “Dark photorefractive spatial solitons and photorefractive vortex solitons,” Phys. Rev. Lett. 74, 1978–1981 (1995).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited