## Canonical-covariant Wigner function in polar form

JOSA A, Vol. 17, Issue 12, pp. 2411-2421 (2000)

http://dx.doi.org/10.1364/JOSAA.17.002411

Enhanced HTML Acrobat PDF (244 KB)

### Abstract

The two-dimensional Wigner function is examined in polar canonical coordinates, and covariance properties under the action of affine canonical transformations are derived.

© 2000 Optical Society of America

**OCIS Codes**

(000.1600) General : Classical and quantum physics

(000.3860) General : Mathematical methods in physics

(070.0070) Fourier optics and signal processing : Fourier optics and signal processing

(080.0080) Geometric optics : Geometric optics

(270.0270) Quantum optics : Quantum optics

**History**

Original Manuscript: March 21, 2000

Revised Manuscript: August 30, 2000

Manuscript Accepted: September 5, 2000

Published: December 1, 2000

**Citation**

T. Hakioğlu, "Canonical-covariant Wigner function in polar form," J. Opt. Soc. Am. A **17**, 2411-2421 (2000)

http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-17-12-2411

Sort: Year | Journal | Reset

### References

- H. Weyl, “Quantenmechanik und Gruppentheorie,” Z. Phys. 46, 1–39 (1927). [CrossRef]
- E. P. Wigner, “On the quantum corrections for thermodynamic equilibrium,” Phys. Rev. 40, 749–760 (1932). [CrossRef]
- H. J. Groenewold, “On the principles of elementary quantum mechanics,” Physica (Amsterdam) 12, 405–460 (1946);J. E. Moyal, “Quantum mechanics as a statistical theory,” Proc. Cambridge Philos. Soc. 45, 99–124 (1949). [CrossRef]
- A. Verçin, “Metaplectic covariance of the Weyl–Wigner–Groenewold–Moyal quantization and beyond,” Ann. Phys. (N.Y.) 266, 503–523 (1998);T. Dereli, A. Verçin, “W∞ covariance of the Weyl–Wigner–Groenewold–Moyal quantization,” J. Math. Phys. 38, 5515–5530 (1997). [CrossRef]
- M. Hillery, R. F. O’Connell, M. O. Scully, E. P. Wigner, “Distribution functions in physics: fundamentals,” Phys. Rep. 106, 121–167 (1984);N. L. Balazs, B. K. Jennings, “Wigner functions and other distribution functions in mock phase spaces,” Phys. Rep. 104, 347–391 (1984);R. G. Littlejohn, “Semiclassical evolution of wave packets,” Phys. Rep. 138, 193–291 (1986). [CrossRef]
- P. A. M. Dirac, The Principles of Quantum Mechanics (Clarendon, Oxford, 1958).
- J. Twamley, “Quantum distribution functions for radial observables,” J. Phys. A 31, 4811–4819 (1998). [CrossRef]
- A. Erdelyi, W. Magnus, F. Oberhettinger, F. G. Tricomi, eds., Tables of Integral Transforms (McGraw-Hill, New York, 1954), Vols. 1 and 2.
- M. Moshinsky, C. Quesne, “Linear canonical transformations and their unitary representations,” J. Math. Phys. 12, 1772–1780 (1971);“Canonical transformations and matrix elements,” 1780–1784 (1971); K. B. Wolf, Integral Transforms in Science and Engineering (Plenum, New York, 1979). [CrossRef]
- N. M. Atakishiyev, S. M. Nagiyev, L. E. Vicent, K. B. Wolf, “Covariant discretization of axis-symmetric linear optical systems,” J. Opt. Soc. Am. A 17, 2301–2314 (2000). [CrossRef]
- R. Simon, K. B. Wolf, “Structure of the set of paraxial optical systems,” J. Opt. Soc. Am. A 17, 342–355 (2000). [CrossRef]
- T. Curtright, D. Fairlie, C. Zachos, “Features of time-independent Wigner functions,” Phys. Rev. D 58, 025002-1–025002-14 (1998). [CrossRef]
- O. Bryngdahl, “Geometrical transforms in optics,” J. Opt. Soc. Am. 64, 1092–1099 (1974);M. J. Bastiaans, “The Wigner distribution function applied to optical signals and systems,” Opt. Commun. 25, 26–30 (1978). [CrossRef]
- P. A. M. Dirac, “The quantum theory of the emission and absorption of radiation,” Proc. R. Soc. London Ser. A 114, 243–265 (1927). [CrossRef]
- K. Fujikawa, L. C. Kwek, C. H. Oh, “q-deformed oscillator algebra and an index theorem for the photon phase operator,” Mod. Phys. Lett. A 10, 2543–2551 (1995);“A Schwinger term in q-deformed su(2) algebra,” Mod. Phys. Lett. A 12, 403–409 (1997). [CrossRef]
- T. Hakioğlu, “Finite dimensional Schwinger basis, deformed symmetries, Wigner function and an algebraic approach to quantum phase,” J. Phys. A 31, 6975–6994 (1998);“Linear canonical transformations and the quantum phase: unified canonical and algebraic approach,” J. Phys. A 32, 4111–4130 (1999); T. Hakioğlu, K. B. Wolf, “The canonical Kravchuk basis for discrete quantum mechanics,” J. Phys. A 33, 3313–3324 (2000). [CrossRef]
- T. Hakioğlu, E. Tepedelenlioğlu, “The action-angle Wigner function: a discrete and algebraic phase space formalism,” J. Phys. A 33, 6357–6383 (2000). [CrossRef]
- M. J. Bastiaans, P. G. J. van de Mortel, “Wigner distribution function of a circular aperture,” J. Opt. Soc. Am. A 13, 1698–1703 (1996). [CrossRef]
- L. Cohen, Time-Frequency Analysis (Prentice-Hall, Englewood Cliffs., N.J., 1995); T. A. C. M. Claasen, W. F. G. Mecklenbräuker, “The Wigner distribution: a tool for time-frequency signal analysis,” Philips J. Res. 35, 217–250 (1980).
- A. Walther, “Propagation of the generalized radiance through lenses,” J. Opt. Soc. Am. 68, 1606–1610 (1978). [CrossRef]
- D. T. Smithey, M. Beck, M. G. Raymer, A. Faridani, “Measurement of the Wigner distribution and the density matrix of a light mode using optical homodyne tomography: Application to squeezed states and the vacuum,” Phys. Rev. Lett. 70, 1244–1247 (1993). [CrossRef] [PubMed]

## Cited By |
Alert me when this paper is cited |

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

### Figures

Fig. 1 |

« Previous Article | Next Article »

OSA is a member of CrossRef.