OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Vol. 17, Iss. 2 — Feb. 1, 2000
  • pp: 218–224

Color signals in natural scenes: characteristics of reflectance spectra and effects of natural illuminants

Chuan-Chin Chiao, Thomas W. Cronin, and Daniel Osorio  »View Author Affiliations

JOSA A, Vol. 17, Issue 2, pp. 218-224 (2000)

View Full Text Article

Enhanced HTML    Acrobat PDF (270 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Multispectral images of natural scenes were collected from both forests and coral reefs to represent typical, complex scenes that might be viewed by modern animals. Both reflectance spectra and modeled visual color signals in these scenes were decorrelated spectrally by principal-component analysis. Nearly 98% of the variance of reflectance spectra and color signals can be described by the first three principal components for both forest and coral reef scenes, which implies that three well-designed visual channels can recover almost all of the spectral information of natural scenes. A variety of natural illuminants affects color signals of forest scenes only slightly, but the variation in ambient irradiance spectra that is due to the absorption of light by water has dramatic influences on the spectral characteristics of coral reef scenes.

© 2000 Optical Society of America

OCIS Codes
(100.2960) Image processing : Image analysis
(110.4190) Imaging systems : Multiple imaging
(120.5630) Instrumentation, measurement, and metrology : Radiometry
(120.5700) Instrumentation, measurement, and metrology : Reflection
(330.1720) Vision, color, and visual optics : Color vision

Original Manuscript: April 26, 1999
Revised Manuscript: September 22, 1999
Manuscript Accepted: October 8, 1999
Published: February 1, 2000

Chuan-Chin Chiao, Thomas W. Cronin, and Daniel Osorio, "Color signals in natural scenes: characteristics of reflectance spectra and effects of natural illuminants," J. Opt. Soc. Am. A 17, 218-224 (2000)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. Brill, “A device performing illuminant-invariant assessment of chromatic relations,” J. Theor. Biol. 71, 473–478 (1978). [CrossRef] [PubMed]
  2. G. Buchsbaum, “A spatial processor model for object colour perception,” J. Franklin Inst. 310, 1–26 (1980). [CrossRef]
  3. M. D’Zmura, P. Lennie, “Mechanisms of color constancy,” J. Opt. Soc. Am. A 3, 1662–1672 (1986). [CrossRef] [PubMed]
  4. L. T. Maloney, B. A. Wandell, “Color constancy: a method for recovering surface spectral reflectance,” J. Opt. Soc. Am. A 3, 29–33 (1986). [CrossRef] [PubMed]
  5. A. C. Hurlbert, “Computational models of colour constancy,” in Perceptual Constancies, V. Walsh, J. Kulikowski, eds. (Cambridge U. Press, Cambridge, UK, 1998).
  6. J. L. Dennemiller, “Spectral reflectance of natural objects: how many basis functions are necessary?” J. Opt. Soc. Am. A 9, 507–515 (1992). [CrossRef]
  7. E. L. Krinov, Spectral Reflectance Properties of Natural Formations, Technical Translation TT-439 (National Research Council of Canada, Ottawa, 1947).
  8. J. Cohen, “Dependency of the spectral reflectance curves of Munsell color chips,” Psychon. Sci. 1, 369–370 (1964). [CrossRef]
  9. K. L. Kelley, K. S. Gibson, D. Nickerson, “Tristimulus specification of the Munsell Book of Color from spectrophotometric measurements,” J. Opt. Soc. Am. 33, 355–376 (1943). [CrossRef]
  10. G. Buchsbaum, A. Gottschalk, “Chromaticity coordinates of frequency-limited functions,” J. Opt. Soc. Am. A 1, 885–887 (1984). [CrossRef] [PubMed]
  11. L. T. Maloney, “Evaluation of linear models of surface spectral reflectance with small numbers of parameters,” J. Opt. Soc. Am. A 3, 1673–1683 (1986). [CrossRef] [PubMed]
  12. D. H. Marimont, B. A. Wandell, “Linear models of surface and illuminant spectra,” J. Opt. Soc. Am. A 9, 1905–1913 (1992). [CrossRef] [PubMed]
  13. J. P. S. Parkkinen, J. Hallikainen, T. Jaaskelainen, “Characteristic spectra of Munsell colors,” J. Opt. Soc. Am. A 6, 318–322 (1989). [CrossRef]
  14. T. Jaaskelainen, J. Parkkinen, S. Toyooka, “Vector-subspace model for color representation,” J. Opt. Soc. Am. A 7, 725–730 (1990). [CrossRef]
  15. M. J. Vrhel, R. Gershon, L. S. Iwan, “Measurement and analysis of object reflectance spectra,” Color Res. Appl. 19, 4–9 (1994).
  16. D. Osorio, D. L. Ruderman, T. W. Cronin, “Estimation of errors in luminance signals encoded by primate retina resulting from sampling of natural images with red and green cones,” J. Opt. Soc. Am. A 15, 16–22 (1998). [CrossRef]
  17. D. L. Ruderman, T. W. Cronin, C.-C. Chiao, “Statistics of cone responses to natural images: implications for visual coding,” J. Opt. Soc. Am. A 15, 2036–2045 (1998). [CrossRef]
  18. J. N. Lythgoe, J. C. Partridge, “Visual pigments and the acquisition of visual information,” J. Exp. Biol. 146, 1–20 (1989). [PubMed]
  19. D. Osorio, T. R. J. Bossomaier, “Human cone-pigment spectral sensitivities and the reflectances of natural surfaces,” Biol. Cybern. 67, 217–222 (1992). [CrossRef] [PubMed]
  20. J. A. Endler, “The color of light in forests and its implications,” Ecol. Monogr. 63, 1–27 (1993). [CrossRef]
  21. G. Wyszecki, W. S. Stiles, Color Sciences: Concepts and Methods, Quantitative Data and Formulae, 2nd ed. (Wiley, New York, 1982).
  22. T. W. Cronin, N. J. Marshall, R. L. Caldwell, N. Shashar, “Specialisation of retinal function in the compound eyes of mantis shrimps,” Vision Res. 34, 2639–2656 (1994). [CrossRef] [PubMed]
  23. F. Attneave, “Some informational aspects of visual perception,” Psychol. Rev. 61, 183–193 (1954). [CrossRef] [PubMed]
  24. H. B. Barlow, “Possible principles underlying the transformation of sensory message,” in Sensory Communication, W. A. Rosenblith, ed. (MIT Press, Cambridge, Mass., 1961), pp. 331–360.
  25. H. B. Barlow, “What causes trichromacy? A theoretical analysis using comb-filtered spectra,” Vision Res. 22, 635–643 (1982). [CrossRef] [PubMed]
  26. D. Osorio, M. Vorobyev, “Colour vision as an adaptation to frugivory in primates,” Proc. R. Soc. London, Ser. B 263, 593–599 (1996). [CrossRef]
  27. N. G. Jerlov, Optical Oceanography (Elsevier, Amsterdam, 1973).
  28. J. N. Lythgoe, The Ecology of Vision (Clarendon, Oxford, UK, 1979).
  29. D. Osorio, N. J. Marshall, T. W. Cronin, “Stomatopod photoreceptor spectral tuning as an adaptation for colour constancy in water,” Vision Res. 37, 3299–3309 (1997). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited