OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Vol. 17, Iss. 2 — Feb. 1, 2000
  • pp: 225–231

Relational color constancy in achromatic and isoluminant images

Sérgio M. C. Nascimento and David H. Foster  »View Author Affiliations


JOSA A, Vol. 17, Issue 2, pp. 225-231 (2000)
http://dx.doi.org/10.1364/JOSAA.17.000225


View Full Text Article

Acrobat PDF (148 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Relational color constancy, which refers to the constancy of perceived relations between surface colors under changes in illuminant, may be based on the computation of spatial ratios of cone excitations. As this activity need occur only within rather than between cone pathways, relational color constancy might be assumed to be based on relative luminance processing. This hypothesis was tested in a psychophysical experiment in which observers viewed simulated images of Mondrian patterns undergoing colorimetric changes that could be attributed either to an illuminant change or to a nonilluminant change; the images were isoluminant, achromatic, or unmodified. Observers reliably discriminated the two types of changes in all three conditions, implying that relational color constancy is not based on luminance cues alone. A computer simulation showed that in these isoluminant and achromatic images spatial ratios of cone excitations and of combinations of cone excitations were almost invariant under illuminant changes and that discrimination performance could be predicted from deviations in these ratios.

© 2000 Optical Society of America

OCIS Codes
(330.0330) Vision, color, and visual optics : Vision, color, and visual optics
(330.1690) Vision, color, and visual optics : Color
(330.1720) Vision, color, and visual optics : Color vision
(330.4060) Vision, color, and visual optics : Vision modeling

Citation
Sérgio M. C. Nascimento and David H. Foster, "Relational color constancy in achromatic and isoluminant images," J. Opt. Soc. Am. A 17, 225-231 (2000)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-17-2-225


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. T. Young, A Course of Lectures on Natural Philosophy and the Mechanical Arts (Joseph Johnson, London, 1807), Vol. I, Lecture XXXVIII.
  2. H. von Helmholtz, Handbuch der Physiologischen Optik, 1st ed. (Leopold Voss, Leipzig, 1867), Vol. II; Helmholtz’s Treatise on Physiological Optics, translation of 3rd ed., J. P. C. Southall, ed. (Optical Society of America, Washington, D.C., 1924), pp. 286–287 (republished by Dover, New York, 1962).
  3. E. H. Land, “Color vision and the natural image. Part I,” Proc. Natl. Acad. Sci. USA 45, 115–129 (1959).
  4. E. H. Land, “Color vision and the natural image. Part II,” Proc. Natl. Acad. Sci. USA 45, 636–644 (1959).
  5. E. H. Land and J. J. McCann, “Lightness and Retinex theory,” J. Opt. Soc. Am. 61, 1–11 (1971).
  6. L. Arend and A. Reeves, “Simultaneous color constancy,” J. Opt. Soc. Am. A 3, 1743–1751 (1986).
  7. L. Arend, A. Reeves, J. Schirillo, and R. Goldstein, “Simultaneous color constancy: papers with diverse Munsell values,” J. Opt. Soc. Am. A 8, 661–672 (1991).
  8. D. I. Bramwell and A. C. Hurlbert, “The role of object recognition in colour constancy,” Perception 22, 62–63 (1993).
  9. D. I. Bramwell and A. C. Hurlbert, “Measurements of colour constancy using a forced-choice matching technique,” Perception 25, 229–241 (1996).
  10. M. P. Lucassen and J. Walraven, “Quantifying color constancy: evidence for nonlinear processing of cone-specific contrast,” Vision Res. 33, 739–757 (1993).
  11. M. P. Lucassen and J. Walraven, “Color constancy under natural and artificial illumination,” Vision Res. 36, 2699–2711 (1996).
  12. F. W. Cornelissen and E. Brenner, “Simultaneous colour constancy revisited: an analysis of viewing strategies,” Vision Res. 35, 2431–2448 (1995).
  13. D. H. Brainard, W. A. Brunt, and J. M. Speigle, “Color constancy in the nearly natural image. I. Asymmetric matches,” J. Opt. Soc. Am. A 14, 2091–2110 (1997).
  14. K. Bäuml, “Illuminant changes under different surface collections: examining some principles of color appearance,” J. Opt. Soc. Am. A 12, 261–271 (1995).
  15. K. Bäuml, “Simultaneous color constancy: how surface color perception varies with the illuminant,” Vision Res. 39, 1531–1550 (1999).
  16. K. Bäuml, “Color constancy: the role of image surfaces in illuminant adjustment,” J. Opt. Soc. Am. A 16, 1521–1530 (1999).
  17. J. M. Kraft and D. H. Brainard, “Mechanisms of color constancy under nearly natural viewing,” Proc. Natl. Acad. Sci. 96, 307–312 (1999).
  18. B. J. Craven and D. H. Foster, “An operational approach to colour constancy,” Vision Res. 32, 1359–1366 (1992).
  19. D. H. Foster, B. J. Craven, and E. R. H. Sale, “Immediate colour constancy,” Ophthalmic Physiol. Opt. 12, 157–160 (1992).
  20. D. H. Foster and S. M. C. Nascimento, “Relational colour constancy from invariant cone-excitation ratios,” Proc. R. Soc. London, Ser. B 257, 115–121 (1994).
  21. S. M. C. Nascimento and D. Foster, “Detecting natural changes of cone-excitation ratios in simple and complex coloured images,” Proc. R. Soc. Lond, Ser. B 264, 1395–1402 (1997).
  22. A. L. Gilchrist and A. Jacobsen, “Lightness constancy through a veiling luminance,” J. Exp. Psychol.: Hum. Percept. Perform. 9, 936–944 (1983).
  23. L. E. Arend and R. Goldstein, “Simultaneous constancy, lightness and brightness,” J. Opt. Soc. Am. A 4, 2281–2285 (1987).
  24. L. E. Arend and B. Spehar, “Lightness, brightness, and brightness contrast: 1. Illuminance variation,” Percept. Psychophys. 54, 446–456 (1993).
  25. M. D’Zmura and A. Mangalick, “Detection of contrary chromatic change,” J. Opt. Soc. Am. A 11, 543–546 (1994).
  26. R. S. Berns, M. E. Gorzynski, and R. J. Motta, “CRT colorimetry. Part II: Metrology,” Color Res. Appl. 18, 315–325 (1993).
  27. J. P. S. Parkkinen, J. Hallikainen, and T. Jaaskelainen, “Characteristic spectra of Munsell colors,” J. Opt. Soc. Am. A 6, 318–322 (1989).
  28. Munsell Book of Color—Matte Finish Collection (Munsell Color Corp., Baltimore, Md., 1976).
  29. T. Jaaskelainen, J. Parkkinen, and S. Toyooka, “Vector-subspace model for color representation,” J. Opt. Soc. Am. A 7, 725–730 (1990).
  30. D. B. Judd, D. L. MacAdam, and G. Wyszecki, “Spectral distribution of typical daylight as a function of correlated color temperature,” J. Opt. Soc. Am. 54, 1031–1040 (1964).
  31. L. T. Maloney and B. A. Wandell, “Color constancy: a method for recovering surface spectral reflectance,” J. Opt. Soc. Am. A 3, 29–33 (1986).
  32. L. T. Maloney, “Evaluation of linear models of surface spectral reflectance with small numbers of parameters,” J. Opt. Soc. Am. A 3, 1673–1683 (1986).
  33. L. T. Maloney, “Color constancy and color perception: the linear-models framework,” in Attention and Performance XIV, D. E. Meyer and S. Kornblum, eds. (MIT Press, Cambridge, Mass., 1993), pp. 59–78.
  34. M. D’Zmura and G. Iverson, “Color constancy. I. Basic theory of two-stage linear recovery of spectral descriptions for lights and surfaces,” J. Opt. Soc. Am. A 10, 2148–2165 (1993).
  35. M. D’Zmura and G. Iverson, “Color constancy. II. Results for two-stage linear recovery of spectral descriptions for lights and surfaces,” J. Opt. Soc. Am. A 10, 2166–2180 (1993).
  36. M. D’Zmura and G. Iverson, “Color constancy. III. General linear recovery of spectral descriptions for lights and surfaces,” J. Opt. Soc. Am. A 11, 2389–2400 (1994).
  37. G. Wyszecki and W. S. Stiles, Color Science: Concepts and Methods, Quantitative Data and Formulae (Wiley, New York, 1982).
  38. P. K. Kaiser, “Sensation luminance: a new name to distinguish CIE luminance from luminance dependent on an individual’s spectral sensitivity,” Vision Res. 28, 455–456 (1988).
  39. V. C. Smith and J. Pokorny, “Spectral sensitivity of color-blind observers and the cone photopigments,” Vision Res. 12, 2059–2071 (1972).
  40. V. C. Smith and J. Pokorny, “Spectral sensitivity of the foveal cone photopigments between 400 and 500 nm,” Vision Res. 15, 161–171 (1975).
  41. G. D. Finlayson, M. S. Drew, and B. V. Funt, “Spectral sharpening: sensor transformations for improved color constancy,” J. Opt. Soc. Am. A 11, 1553–1563 (1994).
  42. G. D. Finlayson, M. S. Drew, and B. V. Funt, “Color constancy: generalized diagonal transforms suffice,” J. Opt. Soc. Am. A 11, 3011–3019 (1994).
  43. Q. Zaidi and A. G. Shapiro, “Adaptive orthogonalization of opponent-color signals,” Biol. Cybern. 69, 415–428 (1993).
  44. R. P. Brent, Algorithms for Minimization without Derivatives (Prentice-Hall, Englewood Cliffs, N.J., 1973).
  45. A. M. Derrington, J. Krauskopf, and P. Lennie, “Chromatic mechanisms in lateral geniculate nucleus of Macaque,” J. Physiol. (London) 357, 241–265 (1984).
  46. R. L. De Valois and K. K. De Valois, “A multi-stage color model,” Vision Res. 33, 1053–1065 (1993).
  47. G. Buchsbaum and A. Gottschalk, “Trichromacy, opponent colours coding and optimum colour information transmission in the retina,” Proc. R. Soc. London, Ser. B 220, 89–113 (1983).
  48. Q. Zaidi, B. Spehar, and J. DeBonet, “Color constancy in variegated scenes: role of low-level mechanisms in discounting illumination changes,” J. Opt. Soc. Am. A 14, 2608–2621 (1997).
  49. Q. Zaidi, “Decorrelation of L- and M-cone signals,” J. Opt. Soc. Am. A 14, 3430–3431 (1997).
  50. Q. Zaidi, “Identification of illuminant and object colors: heuristic-based algorithms,” J. Opt. Soc. Am. A 15, 1767–1776 (1998).
  51. H. G. Sperling and R. S. Harwerth, “Red–green cone interactions in the increment-threshold spectral sensitivity of primates,” Science 172, 180–184 (1971).
  52. D. H. Foster and R. S. Snelgar, “Test and field spectral sensitivities of colour mechanisms obtained on small white backgrounds: action of unitary opponent-colour processes?” Vision Res. 23, 787–797 (1983).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited