OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Vol. 17, Iss. 2 — Feb. 1, 2000
  • pp: 285–293

High-diffraction-efficiency pseudorandom encoding

Yongyi Yang, Henry Stark, Damla Gurkan, Christy L. Lawson, and Robert W. Cohn  »View Author Affiliations

JOSA A, Vol. 17, Issue 2, pp. 285-293 (2000)

View Full Text Article

Enhanced HTML    Acrobat PDF (183 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Pseudorandom encoding (PRE) is a statistics-based procedure in which a pure-phase spatial light modulator (SLM) can yield, on the average, the prescribed diffraction pattern specified by the user. We seek to combine PRE with the optimization of an aperture-based target function. The target function is a fully complex input transmittance, unrealizable by a phase-only SLM, that generates a prescribed light intensity. The optimization is done to increase the diffraction efficiency of the overall process. We compare three optimization methods—Monte Carlo simulation, a genetic algorithm, and a gradient search—for maximizing the diffraction efficiency of a spot-array generator. Calculated solutions are then encoded by PRE, and the resulting diffraction patterns are computer simulated. Details on the complexity of each procedure are furnished, as well as comparisons on the quality, such as uniformity of the output spot array.

© 2000 Optical Society of America

OCIS Codes
(050.1970) Diffraction and gratings : Diffractive optics
(090.1970) Holography : Diffractive optics
(220.4830) Optical design and fabrication : Systems design
(230.6120) Optical devices : Spatial light modulators

Original Manuscript: February 9, 1999
Revised Manuscript: June 21, 1999
Manuscript Accepted: July 15, 1999
Published: February 1, 2000

Yongyi Yang, Henry Stark, Damla Gurkan, Christy L. Lawson, and Robert W. Cohn, "High-diffraction-efficiency pseudorandom encoding," J. Opt. Soc. Am. A 17, 285-293 (2000)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. N. Mait, “Understanding diffractive optic design in the scalar domain,” J. Opt. Soc. Am. A 12, 2145–2158 (1995). [CrossRef]
  2. J. N. Mait, “Fourier array generators,” in Micro-Optics: Elements, Systems, and Applications, H. P. Herzig, ed. (Taylor & Francis, London, 1997), pp. 293–323.
  3. U. Krackhardt, J. N. Mait, N. Streibl, “Upper bound on the diffraction efficiency of phase-only fanout elements,” Appl. Opt. 31, 27–37 (1992). [CrossRef] [PubMed]
  4. F. Wyrowski, “Diffraction efficiency of analog and quantized digital amplitude holograms: analysis and manipulation,” J. Opt. Soc. Am. A 7, 383–393 (1990). [CrossRef]
  5. F. Wyrowski, O. Bryngdahl, “Iterative Fourier-transform algorithm applied to computer holography,” J. Opt. Soc. Am. A 5, 1058–1065 (1988). [CrossRef]
  6. F. Wyrowski, “Iterative quantization of digital amplitude holograms,” Appl. Opt. 28, 3864–3870 (1989). [CrossRef] [PubMed]
  7. F. Wyrowski, “Upper bound of the diffraction efficiency of diffractive phase elements,” Opt. Lett. 16, 1915–1917 (1991). [CrossRef] [PubMed]
  8. J. P. Allebach, D. W. Sweeney, “Iterative approaches to computer generated holography,” in Computer-Generated Holography II, S. H. Lee, ed., Proc. SPIE884, 2–9 (1988). [CrossRef]
  9. H. Stark, W. C. Catino, J. L. LoCicero, “Design of phase gratings by generalized projections,” J. Opt. Soc. Am. A 8, 566–571 (1991). [CrossRef]
  10. H. Stark, Y. Yang, D. Gurkan, “Factors affect convergence in the design of diffractive optics by iterative vector space methods,” J. Opt. Soc. Am. A 16, 149–159 (1999). [CrossRef]
  11. N. C. Gallagher, B. Liu, “Method for computing kinoforms that reduces image reconstruction error,” Appl. Opt. 12, 2328–2335 (1973). [CrossRef] [PubMed]
  12. M. P. Dames, R. J. Dowling, P. McKee, D. Wood, “Efficient optical elements to generate intensity weighted spot arrays: design and fabrication,” Appl. Opt. 30, 2685–2691 (1991). [CrossRef] [PubMed]
  13. J. Bengtsson, “Kinoform design with an optimal-rotation-angle method,” Appl. Opt. 33, 6879–6884 (1994). [CrossRef] [PubMed]
  14. B. R. Brown, A. W. Lohmann, “Complex spatial filtering with binary masks,” Appl. Opt. 5, 967–970 (1966). [CrossRef] [PubMed]
  15. W. H. Lee, “Computer-generated holograms: techniques and applications,” in Progress in Optics, E. Wolf, ed. (Elsevier, Amsterdam, 1978), Vol. 16, pp. 119–231.
  16. W. J. Dallas, “Computer-generated holograms,” in The Computer in Optical Research, B. R. Frieden, ed. (Springer, Berlin, 1980), Chap. 6, pp. 291–366.
  17. L. B. Lesem, P. M. Hirsch, J. A. Jordon, “The kinoform: a new wavefront reconstruction device,” IBM J. Res. Dev. 13, 150–155 (1969). [CrossRef]
  18. D. C. Chu, J. R. Fienup, “Recent approaches to computer-generated holograms,” Opt. Eng. 13, 189–195 (1974). [CrossRef]
  19. D. Casasent, W. A. Rozzi, “Computer-generated and phase-only synthetic discriminant function filters,” Appl. Opt. 25, 3767–3772 (1986). [CrossRef] [PubMed]
  20. D. Prongue, H. P. Herzig, R. Dandliker, M. T. Gale, “Optimized kinoform structures for highly efficient fan-out elements,” Appl. Opt. 31, 5707–5711 (1992). [CrossRef]
  21. M. W. Farn, “New iterative algorithm for the design of phase-only gratings,” in Holographic Optics: Computer and Optically Generated, I. Cindrich, S. H. Lee, eds., Proc. SPIE1555, 34–42 (1991). [CrossRef]
  22. J. D. Stack, M. R. Feldman, “Recursive mean-squared-error algorithm for iterative discrete on-axis encoded holograms,” Appl. Opt. 31, 4839–4846 (1992). [CrossRef] [PubMed]
  23. R. W. Cohn, L. G. Hassebrook, “Representations of fully complex functions on real-time spatial light modulators,” in Optical Information Processing, F. T. S. Yu, S. Jutamulia, eds. (Cambridge U. Press, Cambridge, UK, 1998), Chap. 15, pp. 396–432.
  24. R. W. Cohn, M. Liang, “Approximating fully complex spatial modulation with pseudo-random phase-only modulation,” Appl. Opt. 33, 4406–4415 (1994). [CrossRef] [PubMed]
  25. R. W. Cohn, M. Liang, “Pseudo-random phase-only encoding of real-time spatial light modulators,” Appl. Opt. 35, 2488–2498 (1996). [CrossRef] [PubMed]
  26. S. Geman, D. Geman, “Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images,” IEEE Trans. Pattern. Anal. Mach. Intell. PAMI-6, 721–741 (1984). [CrossRef]
  27. S. Kirpatrick, C. D. Gelatt, M. P. Vecchi, “Optimization by simulated annealing,” Science 220, 671–680 (1983). [CrossRef]
  28. H. Stark, Y. Yang, Vector Space Projections: A Numerical Approach to Signal and Image Processing, Neural Nets, and Optics (Wiley, New York, 1998).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited