OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Vol. 17, Iss. 3 — Mar. 1, 2000
  • pp: 545–556

Comparison of red–green equiluminance points in humans and macaques: evidence for different L:M cone ratios between species

Karen R. Dobkins, Alex Thiele, and Thomas D. Albright  »View Author Affiliations

JOSA A, Vol. 17, Issue 3, pp. 545-556 (2000)

View Full Text Article

Acrobat PDF (189 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The human spectral luminosity function (Vλ) can be modeled as the linear sum of signals from long-wavelength-selective (L) and middle-wavelength-selective (M) cones, with L cones being weighted by a factor of ∼2. This factor of ∼2 is thought to reflect an approximate 2:1 ratio of L:M cones in the human retina, which has been supported by studies that allow for more direct counting of different cone types in the retina. In contrast to humans, several lines of retinally based evidence in macaques suggest an L:M ratio closer to 1:1. To investigate the consequences of differences in L:M cone ratios between humans and macaques, red–green equiluminance matches obtained psychophysically in humans (n=11) were compared with those obtained electrophysiologically from single neurons in the extrastriate middle temporal visual area of macaques (M. mulatta, n=5). Neurons in the middle temporal visual area were tested with sinusoidal red–green moving gratings across a range of luminance contrasts, with equiluminance being defined as the red–green contrast yielding a response minimum. Human subjects were tested under analogous conditions, by a minimally distinct motion technique, to establish psychophysical equiluminance. Although red–green equiluminance points in both humans and macaques were found to vary across individuals, the means across species differed significantly; compared with humans, macaque equiluminance points reflected relatively greater sensitivity to green. By means of a simple model based on equating the weighted sum of L and M cone signals, the observed red–green equiluminance points were found to be consistent with L:M cone ratios of approximately 2:1 in humans and 1:1 in macaques. These data thus support retinally based estimates of L:M cone ratios and further demonstrate that the information carried in the cone mosaic has functional consequences for red–green spectral sensitivity revealed perceptually and in the dorsal stream of visual cortex.

© 2000 Optical Society of America

OCIS Codes
(330.1720) Vision, color, and visual optics : Color vision
(330.4270) Vision, color, and visual optics : Vision system neurophysiology
(330.5310) Vision, color, and visual optics : Vision - photoreceptors
(330.5510) Vision, color, and visual optics : Psychophysics

Karen R. Dobkins, Alex Thiele, and Thomas D. Albright, "Comparison of red–green equiluminance points in humans and macaques: evidence for different L:M cone ratios between species," J. Opt. Soc. Am. A 17, 545-556 (2000)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. G. H. Jacobs, “Variations in color vision in non-human primates,” in Inherited and Acquired Colour Vision Deficiencies: Fundamental Aspects and Clinical Studies, D. H. Foster, ed. (Macmillan, London, 1990), pp. 199–214.
  2. H. J. Dartnall, J. K. Bowmaker, and J. D. Mollon, “Human visual pigments: microspectrophotometric results from the eyes of seven persons,” Proc. R. Soc. London Ser. B 220, 115–130 (1983).
  3. H. J. Dartnall, J. K. Bowmaker, and J. D. Mollon, “Microspectrophotometry of human photoreceptors,” in Color Vision: Physiology and Psychophysics, J. D. Mollon and L. T. Sharpe, eds. (Academic, London, 1983), pp. 69–80.
  4. A. Roorda and D. R. Williams, “The arrangement of the three cone classes in the living human eye [see comments],” Nature 397, 520–522 (1999).
  5. G. H. Jacobs and J. Neitz, “Electrophysiological estimates of individual variation in the L/M cone ratio,” in Colour Vision Deficiencies XI, B. Drum, ed. (Kluwer Academic, Dordrecht, The Netherlands, 1993), pp. 107–112.
  6. S. A. Hagstrom, J. Neitz, and M. Neitz, “Ratio of M/L pigment gene expression decreases with retinal eccentricity,” in Color Vision Deficiencies XIII, C. R. Cavonius, ed., Vol. 59 of Documenta Ophthalmologica Proceedings Series (Kluwer Academic, Dordrecht, The Netherlands, 1997), pp. 59–65.
  7. T. Yamaguchi, A. G. Motulsky, and S. S. Deeb, “Levels of expression of the red, green and red–green hybrid pigment genes in the human retina,” in Colour Vision Deficiencies XIII, C. R. Cavonius, ed., Vol. 59 of Documenta Ophthalmologica Proceedings Series (Kluwer Academic, Dordrecht, The Netherlands, 1997), pp. 21–31.
  8. P. D. Gowdy and C. M. Cicerone, “The spatial arrangement of L and M cones in the central fovea of the living human eye,” Vision Res. 38, 2575–2589 (1998).
  9. J. L. Nerger and C. M. Cicerone, “The ratio of L cones to M cones in the human parafoveal retina,” Vision Res. 32, 879–888 (1992).
  10. C. M. Cicerone and L. Nerger, “The relative numbers of long-wavelength-sensitive to middle-wavelength-sensitive cones in the human fovea centralis,” Vision Res. 29, 115–128 (1989).
  11. R. L. Vimal, J. Pokorny, V. C. Smith, and S. K. Shevell, “Foveal cone thresholds,” Vision Res. 29, 61–78 (1989).
  12. M. F. Wesner, J. Pokorny, S. K. Shevell, and V. C. Smith, “Foveal cone detection statistics in color-normals and dichromats,” Vision Res. 31, 1021–1037 (1991).
  13. C. R. Ingling and E. Martinez-Uriegas, “Simple-opponent receptive fields are asymmetrical: G-cone centers predominate,” J. Opt. Soc. Am. A 73, 1527–1532 (1983).
  14. H. L. De Vries, “The heredity of the relative number of red and green receptors in the human eye,” Genetica (The Hague) 24, 199–212 (1948).
  15. J. J. Vos, “Colorimetric and photometric properties of a 2 degree fundamental observer,” Color Res. Appl. 3, 125–128 (1978).
  16. D. B. Judd, “Report of U.S. Secretariat Committee on colorimetry and artificial daylight,” in CIE Proceedings, Twelfth Session, Stockholm (Bureau Central CIE, Paris, 1951), Vol. 1, Pt. 7, pp. 1–60.
  17. P. Lennie, J. Pokorny, and V. C. Smith, “Luminance,” J. Opt. Soc. Am. A 10, 1283–1293 (1993).
  18. J. D. Mollon and J. K. Bowmaker, “The spatial arrangement of cones in the primate fovea,” Nature 360, 677–679 (1992).
  19. D. A. Baylor, B. J. Nunn, and J. L. Schnapf, “Spectral sensitivity of cones of the monkey Macaca fascicularis,” J. Physiol. (London) 390, 145–160 (1987).
  20. O. S. Packer, D. R. Williams, and D. G. Bensinger, “Photopigment transmittance imaging of the primate photoreceptor mosaic,” J. Neurosci. 16, 2251–2260 (1996).
  21. G. H. Jacobs and J. F. Deegan II, “Spectral sensitivity of macaque monkeys measured with ERG flicker photometry,” Visual Neurosci. 14, 921–928 (1997).
  22. D. J. Calkins, S. J. Schein, Y. Tsukamoto, and P. Sterling, “M and L cones in macaque fovea connect to midget ganglion cells by different numbers of excitatory synapses,” Nature 371, 70–72 (1994).
  23. N. A. Sidley and H. G. Sperling, “Photopic spectral sensitivity in the rhesus monkey,” J. Opt. Soc. Am. 57, 816–818 (1967).
  24. M. L. Crawford, “Central vision of man and macaque: cone and rod sensitivity,” Brain Res. 119, 345–356 (1977).
  25. R. S. Harwerth and E. L. Smith III, “Rhesus monkey as a model for normal vision of humans,” Am. J. Optom. Physiol. Opt. 62, 633–641 (1985).
  26. R. L. De Valois, H. C. Morgan, M. C. Polson, W. R. Mead, and E. M. Hull, “Psychophysical studies of monkey vision. I. Macaque luminosity and color vision tests,” Vision Res. 14, 53–67 (1974).
  27. H. Zwick and D. O. Robbins, “Is the rhesus protanomalous?” Mod. Probl. Ophthalmol. 19, 238–242 (1978).
  28. I. Behar and P. D. Bock, “Visual acuity as a function of wavelength in three catarrhine species,” Folia Primatol. 21, 277–289 (1974).
  29. N. A. Sidley, H. G. Sperling, E. W. Bedarf, and R. H. Hiss, “Photopic spectral sensitivity in the monkey: methods for determining, and initial results,” Science 150, 1837–1839 (1965).
  30. K. R. Dobkins and T. D. Albright, “Behavioral and neural effects of chromatic isoluminance in the primate visual motion system,” Visual Neurosci. 12, 321–332 (1995).
  31. K. R. Dobkins and T. D. Albright, “What happens if it changes color when it moves?: The nature of chromatic input to macaque visual area MT,” J. Neurosci. 14, 4854–4870 (1994).
  32. A. Thiele, K. R. Dobkins, and T. D. Albright, “The contribu-tion of color to motion processing in MT,” J. Neurosci. 19, 6571–6587 (1999).
  33. A. B. Watson, K. R. K. Nielson, A. Poirson, A. Fitzhugh, A. Bilson, K. Nguyen, and A. J. Ahumada, “Use of a raster framebuffer in vision research,” Behav. Res. Methods Instrum. 18, 587–594 (1986).
  34. R. M. Boynton, “History and current status of a physiologically based system of photometry and colorimetry,” J. Opt. Soc. Am. A 13, 1609–1621 (1996).
  35. P. Cavanagh, D. I. MacLeod, and S. M. Anstis, “Equiluminance: spatial and temporal factors and the contribution of blue-sensitive cones,” J. Opt. Soc. Am. A 4, 1428–1438 (1987).
  36. A. Eisner and D. I. Macleod, “Blue-sensitive cones do not contribute to luminance,” J. Opt. Soc. Am. 70, 121–123 (1980).
  37. B. W. Tansley and R. M. Boynton, “Chromatic border perception: the role of red- and green-sensitive cones,” Vision Res. 18, 683–697 (1978).
  38. A. Stockman, D. I. MacLeod, and D. D. DePriest, “The temporal properties of the human short-wave photoreceptors and their associated pathways,” Vision Res. 31, 189–208 (1991).
  39. J. D. Moreland, “Spectral sensitivity measured by motion photometry,” in Vol. 33 of Documenta Ophthalmologica Proceedings Series (Kluwer Academic, Dordrecht, The Netherlands, 1982), pp. 61–66.
  40. K. R. Dobkins and D. Y. Teller, “Infant motion:detection (M:D) ratios for chromatic-defined and luminance-defined moving stimuli,” Vision Res. 36, 3293–3310 (1996).
  41. A. Stockman, D. I. MacLeod, and N. E. Johnson, “Spectral sensitivities of the human cones,” J. Opt. Soc. Am. A 10, 2491–2521 (1993).
  42. M. L. Bieber, J. M. Kraft, and J. S. Werner, “Effects of known variations in photopigments on L/M cone ratios estimated from luminous efficiency functions,” Vision Res. 38, 1961–1966 (1998).
  43. L. T. Sharpe, J. Kremers, H. Knau, T. T. J. M. Berendschot, and T. Usui, “Ratios of L and M cones in the normal retina,” Perception 27, 26–27 (1998).
  44. D. H. Brainard, J. B. Calderone, G. H. Jacobs, A. Roorda, Y. Yamauchi, D. R. Williams, A. Metha, M. Neitz, and J. Neitz, “Functional consequences of the relative numbers of L and M cones,” J. Opt. Soc. Am. A. 17, 607–614 (2000).
  45. W. B. Cushman and J. Z. Levinson, “Phase shift in red and green counterphase flicker at high frequencies,” J. Opt. Soc. Am. 73, 1557–1561 (1983).
  46. K. R. Dobkins and T. D. Albright, “What happens if it changes color when it moves?: Psychophysical experiments on the nature of chromatic input to motion detectors,” Vision Res. 33, 1019–1036 (1993).
  47. N. K. Logothetis and E. R. Charles, “The minimum motion technique applied to determine isoluminance in psycho- physical experiments with monkeys,” Vision Res. 30, 829–838 (1990).
  48. K. R. Dobkins, K. L. Gunther, and D. H. Peterzell, “What covariance mechanisms underlie green/red equiluminance, chromatic contrast sensitivity and luminance contrast sensitivity at various spatial and temporal frequencies?” Vision Res. (to be published).
  49. C. F. Stromeyer III, A. Chaparro, A. S. Tolias, and R. E. Kronauer, “Colour adaptation modifies the long-wave versus middle-wave cone weights and temporal phases in human luminance (but not red–green) mechanism,” J. Physiol. (London) 499, 227–254 (1997).
  50. M. S. Livingstone and D. H. Hubel, “Psychophysical evidence for separate channels for the perception of form, color, movement, and depth,” J. Neurosci. 7, 3416–3468 (1987).
  51. K. T. Mullen, “Colour vision as a post-receptoral specialization of the central visual field,” Vision Res. 31, 119–130 (1991).
  52. W. H. Merigan and J. H. Maunsell, “How parallel are the primate visual pathways?” Annu. Rev. Neurosci. 16, 369–402 (1993).
  53. D. M. Dacey, “Circuitry for color coding in the primate retina,” Proc. Natl. Acad. Sci. USA 93, 582–588 (1996).
  54. B. B. Lee, P. R. Martin, and A. Valberg, “The physiological basis of heterochromatic flicker photometry demonstrated in the ganglion cells of the macaque retina,” J. Physiol. (London) 404, 323–347 (1988).
  55. P. K. Kaiser, B. B. Lee, P. R. Martin, and A. Valberg, “The physiological basis of the minimally distinct border demonstrated in the ganglion cells of the macaque retina,” J. Physiol. (London) 422, 153–183 (1990).
  56. A. Valberg, B. B. Lee, P. K. Kaiser, and J. Kremers, “Responses of macaque ganglion cells to movement of chromatic borders,” J. Physiol. (London) 458, 579–602 (1992).
  57. J. H. Maunsell, T. A. Nealey, and D. D. DePriest, “Magnocellular and parvocellular contributions to responses in the middle temporal visual area (MT) of the macaque monkey,” J. Neurosci. 10, 3323–3334 (1990).
  58. A. Eisner and D. I. Macleod, “Flicker photometric study of chromatic adaptation: selective suppression of cone inputs by colored backgrounds,” J. Opt. Soc. Am. 71, 705–718 (1981).
  59. C. F. Stromeyer III, A. Chaparro, A. Tolias, and R. Kronauer, “Equiluminant settings change markedly with temporal frequency,” Invest. Ophthalmol. Visual Sci. Suppl. 36, S210 (1995).
  60. D. V. van Norren and J. J. Voss, “Spectral transmission of the human ocular media,” Vision Res. 14, 1237–1244 (1974).
  61. J. S. Werner, D. H. Peterzell, and A. J. Scheetz, “Light, vision and aging,” Opt. Vision Sci. 67, 214–229 (1990).
  62. J. Tigges, T. P. Gordon, H. M. McClure, E. C. Hall, and A. Peters, “Survival rate and life span of rhesus monkeys at the Yerkes Regional Primate Research Center,” Am. J. Primatol. 15, 263–273 (1988).
  63. R. S. Harwerth, E. L. Smith III, and L. DeSantis, “Mechanisms mediating visual detection in static perimetry,” Invest. Ophthalmol. Visual Sci. 34, 3011–3023 (1993).
  64. J. Dillon, “UV-B as a pro-aging and pro-cataract factor,” Doc. Ophthalmol. 88, 339–344 (1994).
  65. P. L. Kaufman and L. Z. Bito, “The occurrence of senile cataracts, ocular hypertension and glaucoma in rhesus monkeys,” Exp. Eye Res. 34, 287–291 (1982).
  66. D. M. Snodderly, P. K. Brown, F. C. Delori, and J. D. Auran, “The macular pigment. I. Absorbance spectra, localization, and discrimination from other yellow pigments in primate retinas,” Invest. Ophthalmol. Visual Sci. 25, 660–673 (1984).
  67. G. Wagner and R. M. Boynton, “Comparison of four methods of heterochromatic photometry,” J. Opt. Soc. Am. 62, 1508–1515 (1972).
  68. S. L. Guth, N. J. Donley, and R. T. Marrocco, “On luminance additivity and related topics,” Vision Res. 9, 537–575 (1969).
  69. S. L. Guth and H. R. Lodge, “Heterochromatic additivity, foveal spectral sensitivity and a new color model,” J. Opt. Soc. Am. 63, 450–462 (1973).
  70. R. A. Bush and P. A. Sieving, “Inner retinal contributions to the primate photopic fast flicker electroretinogram,” J. Opt. Soc. Am. A 13, 557–565 (1996).
  71. D. M. Dacey, L. C. Diller, J. Verweij, and D. R. Williams, “Physiology of L- and M-cone inputs to H1 horizontal cells in the primate retina,” J. Opt. Soc. Am. A 17, 589–596 (2000).
  72. J. D. Mollon, “‘Tho’ she kneel’d in that place where they grew...’ The uses and origins of primate colour vision,” J. Exp. Biol. 146, 21–38 (1989).
  73. C. Wehrhahn and G. Westheimer, “How vernier acuity depends on contrast,” Exp. Brain Res. 80, 618–620 (1990).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited