OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Vol. 17, Iss. 3 — Mar. 1, 2000
  • pp: 545–556

Comparison of red–green equiluminance points in humans and macaques: evidence for different L:M cone ratios between species

Karen R. Dobkins, Alex Thiele, and Thomas D. Albright  »View Author Affiliations


JOSA A, Vol. 17, Issue 3, pp. 545-556 (2000)
http://dx.doi.org/10.1364/JOSAA.17.000545


View Full Text Article

Enhanced HTML    Acrobat PDF (189 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The human spectral luminosity function (Vλ) can be modeled as the linear sum of signals from long-wavelength-selective (L) and middle-wavelength-selective (M) cones, with L cones being weighted by a factor of ∼2. This factor of ∼2 is thought to reflect an approximate 2:1 ratio of L:M cones in the human retina, which has been supported by studies that allow for more direct counting of different cone types in the retina. In contrast to humans, several lines of retinally based evidence in macaques suggest an L:M ratio closer to 1:1. To investigate the consequences of differences in L:M cone ratios between humans and macaques, red–green equiluminance matches obtained psychophysically in humans (n=11) were compared with those obtained electrophysiologically from single neurons in the extrastriate middle temporal visual area of macaques (M. mulatta, n=5). Neurons in the middle temporal visual area were tested with sinusoidal red–green moving gratings across a range of luminance contrasts, with equiluminance being defined as the red–green contrast yielding a response minimum. Human subjects were tested under analogous conditions, by a minimally distinct motion technique, to establish psychophysical equiluminance. Although red–green equiluminance points in both humans and macaques were found to vary across individuals, the means across species differed significantly; compared with humans, macaque equiluminance points reflected relatively greater sensitivity to green. By means of a simple model based on equating the weighted sum of L and M cone signals, the observed red–green equiluminance points were found to be consistent with L:M cone ratios of approximately 2:1 in humans and 1:1 in macaques. These data thus support retinally based estimates of L:M cone ratios and further demonstrate that the information carried in the cone mosaic has functional consequences for red–green spectral sensitivity revealed perceptually and in the dorsal stream of visual cortex.

© 2000 Optical Society of America

OCIS Codes
(330.1720) Vision, color, and visual optics : Color vision
(330.4270) Vision, color, and visual optics : Vision system neurophysiology
(330.5310) Vision, color, and visual optics : Vision - photoreceptors
(330.5510) Vision, color, and visual optics : Psychophysics

History
Original Manuscript: June 8, 1999
Revised Manuscript: July 26, 1999
Manuscript Accepted: August 2, 1999
Published: March 1, 2000

Citation
Karen R. Dobkins, Alex Thiele, and Thomas D. Albright, "Comparison of red–green equiluminance points in humans and macaques: evidence for different L:M cone ratios between species," J. Opt. Soc. Am. A 17, 545-556 (2000)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-17-3-545


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. G. H. Jacobs, “Variations in color vision in non-human primates,” in Inherited and Acquired Colour Vision Deficiencies: Fundamental Aspects and Clinical Studies, D. H. Foster, ed. (Macmillan, London, 1990), pp. 199–214.
  2. H. J. Dartnall, J. K. Bowmaker, J. D. Mollon, “Human visual pigments: microspectrophotometric results from the eyes of seven persons,” Proc. R. Soc. London Ser. B 220, 115–130 (1983). [CrossRef]
  3. H. J. Dartnall, J. K. Bowmaker, J. D. Mollon, “Microspectrophotometry of human photoreceptors,” in Color Vision: Physiology and Psychophysics, J. D. Mollon, L. T. Sharpe, eds. (Academic, London, 1983), pp. 69–80.
  4. A. Roorda, D. R. Williams, “The arrangement of the three cone classes in the living human eye [see comments],” Nature 397, 520–522 (1999). [CrossRef]
  5. G. H. Jacobs, J. Neitz, “Electrophysiological estimates of individual variation in the L/M cone ratio,” in Colour Vision Deficiencies XI, B. Drum, ed. (Kluwer Academic, Dordrecht, The Netherlands, 1993), pp. 107–112.
  6. S. A. Hagstrom, J. Neitz, M. Neitz, “Ratio of M/L pigment gene expression decreases with retinal eccentricity,” in Color Vision Deficiencies XIII, C. R. Cavonius, ed., Vol. 59 of Documenta Ophthalmologica Proceedings Series (Kluwer Academic, Dordrecht, The Netherlands, 1997), pp. 59–65. [CrossRef]
  7. T. Yamaguchi, A. G. Motulsky, S. S. Deeb, “Levels of expression of the red, green and red–green hybrid pigment genes in the human retina,” in Colour Vision Deficiencies XIII, C. R. Cavonius, ed., Vol. 59 of Documenta Ophthalmologica Proceedings Series (Kluwer Academic, Dordrecht, The Netherlands, 1997), pp. 21–31. [CrossRef]
  8. P. D. Gowdy, C. M. Cicerone, “The spatial arrangement of L and M cones in the central fovea of the living human eye,” Vision Res. 38, 2575–2589 (1998). [CrossRef]
  9. J. L. Nerger, C. M. Cicerone, “The ratio of L cones to M cones in the human parafoveal retina,” Vision Res. 32, 879–888 (1992). [CrossRef] [PubMed]
  10. C. M. Cicerone, L. Nerger, “The relative numbers of long-wavelength-sensitive to middle-wavelength-sensitive cones in the human fovea centralis,” Vision Res. 29, 115–128 (1989). [CrossRef] [PubMed]
  11. R. L. Vimal, J. Pokorny, V. C. Smith, S. K. Shevell, “Foveal cone thresholds,” Vision Res. 29, 61–78 (1989). [CrossRef] [PubMed]
  12. M. F. Wesner, J. Pokorny, S. K. Shevell, V. C. Smith, “Foveal cone detection statistics in color-normals and dichromats,” Vision Res. 31, 1021–1037 (1991). [CrossRef] [PubMed]
  13. C. R. Ingling, E. Martinez-Uriegas, “Simple-opponent receptive fields are asymmetrical: G-cone centers predominate,” J. Opt. Soc. Am. A 73, 1527–1532 (1983). [CrossRef]
  14. H. L. De Vries, “The heredity of the relative number of red and green receptors in the human eye,” Genetica (The Hague) 24, 199–212 (1948).
  15. J. J. Vos, “Colorimetric and photometric properties of a 2 degree fundamental observer,” Color Res. Appl. 3, 125–128 (1978). [CrossRef]
  16. D. B. Judd, “Report of U.S. Secretariat Committee on colorimetry and artificial daylight,” in CIE Proceedings, Twelfth Session, Stockholm (Bureau Central CIE, Paris, 1951), Vol. 1, Pt. 7, pp. 1–60.
  17. P. Lennie, J. Pokorny, V. C. Smith, “Luminance,” J. Opt. Soc. Am. A 10, 1283–1293 (1993). [CrossRef] [PubMed]
  18. J. D. Mollon, J. K. Bowmaker, “The spatial arrangement of cones in the primate fovea,” Nature 360, 677–679 (1992). [CrossRef] [PubMed]
  19. D. A. Baylor, B. J. Nunn, J. L. Schnapf, “Spectral sensitivity of cones of the monkey Macaca fascicularis,” J. Physiol. (London) 390, 145–160 (1987).
  20. O. S. Packer, D. R. Williams, D. G. Bensinger, “Photopigment transmittance imaging of the primate photoreceptor mosaic,” J. Neurosci. 16, 2251–2260 (1996). [PubMed]
  21. G. H. Jacobs, J. F. Deegan, “Spectral sensitivity of macaque monkeys measured with ERG flicker photometry,” Visual Neurosci. 14, 921–928 (1997). [CrossRef]
  22. D. J. Calkins, S. J. Schein, Y. Tsukamoto, P. Sterling, “M and L cones in macaque fovea connect to midget ganglion cells by different numbers of excitatory synapses,” Nature 371, 70–72 (1994). [CrossRef] [PubMed]
  23. N. A. Sidley, H. G. Sperling, “Photopic spectral sensitivity in the rhesus monkey,” J. Opt. Soc. Am. 57, 816–818 (1967). [CrossRef] [PubMed]
  24. M. L. Crawford, “Central vision of man and macaque: cone and rod sensitivity,” Brain Res. 119, 345–356 (1977). [CrossRef] [PubMed]
  25. R. S. Harwerth, E. L. Smith, “Rhesus monkey as a model for normal vision of humans,” Am. J. Optom. Physiol. Opt. 62, 633–641 (1985). [CrossRef] [PubMed]
  26. R. L. De Valois, H. C. Morgan, M. C. Polson, W. R. Mead, E. M. Hull, “Psychophysical studies of monkey vision. I. Macaque luminosity and color vision tests,” Vision Res. 14, 53–67 (1974). [CrossRef] [PubMed]
  27. H. Zwick, D. O. Robbins, “Is the rhesus protanomalous?” Mod. Probl. Ophthalmol. 19, 238–242 (1978). [PubMed]
  28. I. Behar, P. D. Bock, “Visual acuity as a function of wavelength in three catarrhine species,” Folia Primatol. 21, 277–289 (1974). [CrossRef] [PubMed]
  29. N. A. Sidley, H. G. Sperling, E. W. Bedarf, R. H. Hiss, “Photopic spectral sensitivity in the monkey: methods for determining, and initial results,” Science 150, 1837–1839 (1965). [CrossRef] [PubMed]
  30. K. R. Dobkins, T. D. Albright, “Behavioral and neural effects of chromatic isoluminance in the primate visual motion system,” Visual Neurosci. 12, 321–332 (1995). [CrossRef]
  31. K. R. Dobkins, T. D. Albright, “What happens if it changes color when it moves?: The nature of chromatic input to macaque visual area MT,” J. Neurosci. 14, 4854–4870 (1994). [PubMed]
  32. A. Thiele, K. R. Dobkins, T. D. Albright, “The contribu-tion of color to motion processing in MT,” J. Neurosci. 19, 6571–6587 (1999). [PubMed]
  33. A. B. Watson, K. R. K. Nielson, A. Poirson, A. Fitzhugh, A. Bilson, K. Nguyen, A. J. Ahumada, “Use of a raster framebuffer in vision research,” Behav. Res. Methods Instrum. 18, 587–594 (1986). [CrossRef]
  34. R. M. Boynton, “History and current status of a physiologically based system of photometry and colorimetry,” J. Opt. Soc. Am. A 13, 1609–1621 (1996). [CrossRef]
  35. P. Cavanagh, D. I. MacLeod, S. M. Anstis, “Equiluminance: spatial and temporal factors and the contribution of blue-sensitive cones,” J. Opt. Soc. Am. A 4, 1428–1438 (1987). [CrossRef] [PubMed]
  36. A. Eisner, D. I. Macleod, “Blue-sensitive cones do not contribute to luminance,” J. Opt. Soc. Am. 70, 121–123 (1980). [CrossRef] [PubMed]
  37. B. W. Tansley, R. M. Boynton, “Chromatic border perception: the role of red- and green-sensitive cones,” Vision Res. 18, 683–697 (1978). [CrossRef] [PubMed]
  38. A. Stockman, D. I. MacLeod, D. D. DePriest, “The temporal properties of the human short-wave photoreceptors and their associated pathways,” Vision Res. 31, 189–208 (1991). [CrossRef] [PubMed]
  39. J. D. Moreland, “Spectral sensitivity measured by motion photometry,” in Vol. 33 of Documenta Ophthalmologica Proceedings Series (Kluwer Academic, Dordrecht, The Netherlands, 1982), pp. 61–66.
  40. K. R. Dobkins, D. Y. Teller, “Infant motion:detection (M:D) ratios for chromatic-defined and luminance-defined moving stimuli,” Vision Res. 36, 3293–3310 (1996). [CrossRef] [PubMed]
  41. A. Stockman, D. I. MacLeod, N. E. Johnson, “Spectral sensitivities of the human cones,” J. Opt. Soc. Am. A 10, 2491–2521 (1993). [CrossRef]
  42. M. L. Bieber, J. M. Kraft, J. S. Werner, “Effects of known variations in photopigments on L/M cone ratios estimated from luminous efficiency functions,” Vision Res. 38, 1961–1966 (1998). [CrossRef] [PubMed]
  43. L. T. Sharpe, J. Kremers, H. Knau, T. T. J. M. Berendschot, T. Usui, “Ratios of L and M cones in the normal retina,” Perception 27, 26–27 (1998).
  44. D. H. Brainard, J. B. Calderone, G. H. Jacobs, A. Roorda, Y. Yamauchi, D. R. Williams, A. Metha, M. Neitz, J. Neitz, “Functional consequences of the relative numbers of L and M cones,” J. Opt. Soc. Am. A. 17, 607–614 (2000). [CrossRef]
  45. W. B. Cushman, J. Z. Levinson, “Phase shift in red and green counterphase flicker at high frequencies,” J. Opt. Soc. Am. 73, 1557–1561 (1983). [CrossRef] [PubMed]
  46. K. R. Dobkins, T. D. Albright, “What happens if it changes color when it moves?: Psychophysical experiments on the nature of chromatic input to motion detectors,” Vision Res. 33, 1019–1036 (1993). [CrossRef] [PubMed]
  47. N. K. Logothetis, E. R. Charles, “The minimum motion technique applied to determine isoluminance in psycho- physical experiments with monkeys,” Vision Res. 30, 829–838 (1990). [CrossRef]
  48. K. R. Dobkins, K. L. Gunther, D. H. Peterzell, “What covariance mechanisms underlie green/red equiluminance, chromatic contrast sensitivity and luminance contrast sensitivity at various spatial and temporal frequencies?” Vision Res. (to be published).
  49. C. F. Stromeyer, A. Chaparro, A. S. Tolias, R. E. Kronauer, “Colour adaptation modifies the long-wave versus middle-wave cone weights and temporal phases in human luminance (but not red–green) mechanism,” J. Physiol. (London) 499, 227–254 (1997).
  50. M. S. Livingstone, D. H. Hubel, “Psychophysical evidence for separate channels for the perception of form, color, movement, and depth,” J. Neurosci. 7, 3416–3468 (1987). [PubMed]
  51. K. T. Mullen, “Colour vision as a post-receptoral specialization of the central visual field,” Vision Res. 31, 119–130 (1991). [CrossRef] [PubMed]
  52. W. H. Merigan, J. H. Maunsell, “How parallel are the primate visual pathways?” Annu. Rev. Neurosci. 16, 369–402 (1993). [CrossRef] [PubMed]
  53. D. M. Dacey, “Circuitry for color coding in the primate retina,” Proc. Natl. Acad. Sci. USA 93, 582–588 (1996). [CrossRef] [PubMed]
  54. B. B. Lee, P. R. Martin, A. Valberg, “The physiological basis of heterochromatic flicker photometry demonstrated in the ganglion cells of the macaque retina,” J. Physiol. (London) 404, 323–347 (1988).
  55. P. K. Kaiser, B. B. Lee, P. R. Martin, A. Valberg, “The physiological basis of the minimally distinct border demonstrated in the ganglion cells of the macaque retina,” J. Physiol. (London) 422, 153–183 (1990).
  56. A. Valberg, B. B. Lee, P. K. Kaiser, J. Kremers, “Responses of macaque ganglion cells to movement of chromatic borders,” J. Physiol. (London) 458, 579–602 (1992).
  57. J. H. Maunsell, T. A. Nealey, D. D. DePriest, “Magnocellular and parvocellular contributions to responses in the middle temporal visual area (MT) of the macaque monkey,” J. Neurosci. 10, 3323–3334 (1990). [PubMed]
  58. A. Eisner, D. I. Macleod, “Flicker photometric study of chromatic adaptation: selective suppression of cone inputs by colored backgrounds,” J. Opt. Soc. Am. 71, 705–718 (1981). [CrossRef] [PubMed]
  59. C. F. Stromeyer, A. Chaparro, A. Tolias, R. Kronauer, “Equiluminant settings change markedly with temporal frequency,” Invest. Ophthalmol. Visual Sci. Suppl. 36, S210 (1995).
  60. D. V. van Norren, J. J. Voss, “Spectral transmission of the human ocular media,” Vision Res. 14, 1237–1244 (1974). [CrossRef]
  61. J. S. Werner, D. H. Peterzell, A. J. Scheetz, “Light, vision and aging,” Opt. Vision Sci. 67, 214–229 (1990). [CrossRef]
  62. J. Tigges, T. P. Gordon, H. M. McClure, E. C. Hall, A. Peters, “Survival rate and life span of rhesus monkeys at the Yerkes Regional Primate Research Center,” Am. J. Primatol. 15, 263–273 (1988). [CrossRef]
  63. R. S. Harwerth, E. L. Smith, L. DeSantis, “Mechanisms mediating visual detection in static perimetry,” Invest. Ophthalmol. Visual Sci. 34, 3011–3023 (1993).
  64. J. Dillon, “UV-B as a pro-aging and pro-cataract factor,” Doc. Ophthalmol. 88, 339–344 (1994). [CrossRef] [PubMed]
  65. P. L. Kaufman, L. Z. Bito, “The occurrence of senile cataracts, ocular hypertension and glaucoma in rhesus monkeys,” Exp. Eye Res. 34, 287–291 (1982). [CrossRef] [PubMed]
  66. D. M. Snodderly, P. K. Brown, F. C. Delori, J. D. Auran, “The macular pigment. I. Absorbance spectra, localization, and discrimination from other yellow pigments in primate retinas,” Invest. Ophthalmol. Visual Sci. 25, 660–673 (1984).
  67. G. Wagner, R. M. Boynton, “Comparison of four methods of heterochromatic photometry,” J. Opt. Soc. Am. 62, 1508–1515 (1972). [CrossRef] [PubMed]
  68. S. L. Guth, N. J. Donley, R. T. Marrocco, “On luminance additivity and related topics,” Vision Res. 9, 537–575 (1969). [CrossRef] [PubMed]
  69. S. L. Guth, H. R. Lodge, “Heterochromatic additivity, foveal spectral sensitivity and a new color model,” J. Opt. Soc. Am. 63, 450–462 (1973). [CrossRef] [PubMed]
  70. R. A. Bush, P. A. Sieving, “Inner retinal contributions to the primate photopic fast flicker electroretinogram,” J. Opt. Soc. Am. A 13, 557–565 (1996). [CrossRef]
  71. D. M. Dacey, L. C. Diller, J. Verweij, D. R. Williams, “Physiology of L- and M-cone inputs to H1 horizontal cells in the primate retina,” J. Opt. Soc. Am. A 17, 589–596 (2000). [CrossRef]
  72. J. D. Mollon, “‘Tho’ she kneel’d in that place where they grew…’ The uses and origins of primate colour vision,” J. Exp. Biol. 146, 21–38 (1989). [PubMed]
  73. C. Wehrhahn, G. Westheimer, “How vernier acuity depends on contrast,” Exp. Brain Res. 80, 618–620 (1990). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited