OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Vol. 17, Iss. 6 — Jun. 1, 2000
  • pp: 1012–1020

Anomalous refractive properties of photonic crystals

Boris Gralak, Stefan Enoch, and Gérard Tayeb  »View Author Affiliations


JOSA A, Vol. 17, Issue 6, pp. 1012-1020 (2000)
http://dx.doi.org/10.1364/JOSAA.17.001012


View Full Text Article

Acrobat PDF (848 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We describe methods of investigating the behavior of photonic crystals. Our approach establishes a link between the dispersion relation of the Bloch modes for an infinite crystal (which describes the intrinsic properties of the photonic crystal in the absence of an incident field) and the diffraction problem of a grating (finite photonic crystal) illuminated by an incident field. We point out the relationship between the translation operator of the first problem and the transfer matrix of the second. The eigenvalues of the transfer matrix contain information about the dispersion relation. This approach enables us to answer questions such as When does ultrarefraction occur? Can the photonic crystal simulate a homogeneous and isotropic material with low effective index? This approach also enables us to determine suitable parameters to obtain ultrarefractive or negative refraction properties and to design optical devices such as highly dispersive microprisms and ultrarefractive microlenses. Rigorous computations add a quantitative aspect and demonstrate the relevance of our approach.

© 2000 Optical Society of America

OCIS Codes
(050.1950) Diffraction and gratings : Diffraction gratings
(260.2110) Physical optics : Electromagnetic optics

Citation
Boris Gralak, Stefan Enoch, and Gérard Tayeb, "Anomalous refractive properties of photonic crystals," J. Opt. Soc. Am. A 17, 1012-1020 (2000)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-17-6-1012


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. S. Y. Lin, V. M. Hietala, L. Wang, and E. D. Jones, “Highly dispersive photonic band-gap prism,” Opt. Lett. 21, 1771–1773 (1996).
  2. H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, “Superprism phenomena in photonic crystals,” Phys. Rev. B 58, 10096–10099 (1998).
  3. R. Zengerle, “Light propagation in singly and doubly periodic planar waveguides,” J. Mod. Opt. 34, 1589–1617 (1987).
  4. K. M. Ho, C. T. Chan, and C. M. Soukoulis, “Existence of photonic gap in periodic dielectric structures,” Phys. Rev. Lett. 65, 3152–3155 (1990).
  5. M. Plihal and A. A. Maradudin, “Photonic band structure of two-dimensional systems: the triangular lattice,” Phys. Rev. B 44, 8565–8571 (1991).
  6. H. S. Sözüer, J. W. Haus, and R. Inguva, “Photonic bands: convergence problems with the plane-wave method,” Phys. Rev. B 45, 13962–13972 (1992).
  7. J. Joannopoulos, R. Meade, and J. Winn, Photonic Crystals (Princeton U. Press, Princeton, N.J., 1995).
  8. R. D. Meade, A. M. Rappe, K. D. Brommer, J. D. Joannopoulos, and O. L. Alerhand, “Accurate theoretical analysis of photonic band-gap materials,” Phys. Rev. B 48, 8434–8437 (1993). See also the erratum in Phys. Rev. B 55, 15942 (1997).
  9. A. Moroz and C. Sommers, “Photonic band gaps of three-dimensional face-centered cubic lattices,” J. Phys. Condens. Matter 11, 997–1008 (1999).
  10. D. R. Smith, S. Schultz, S. L. McCall, and P. M. Platzmann, “Defect studies in a two-dimensional periodic photonic lattice,” J. Mod. Opt. 41, 395–404 (1994).
  11. M. Sigalas, C. M. Soukoulis, E. N. Economou, C. T. Chan, and K. M. Ho, “Photonic band gaps and defects in two dimensions: studies of the transmission coefficient,” Phys. Rev. B 48, 14121–14126 (1993).
  12. S. Enoch, G. Tayeb, and D. Maystre, “Numerical evidence of ultrarefractive optics in photonic crystals,” Opt. Commun. 161, 171–176 (1999).
  13. P. Yeh, “Electromagnetic propagation in birefringent layered media,” J. Opt. Soc. Am. 69, 742–756 (1979).
  14. J. B. Pendry, “Photonic band structures,” J. Mod. Opt. 41, 209–229 (1994).
  15. J. M. Elson and P. Tran, “Coupled-mode calculation with the R-matrix propagator for the dispersion of surface waves on a truncated photonic crystal,” Phys. Rev. B 54, 1711–1715 (1996).
  16. R. C. Hall, R. Mittra, and K. M. Mitzner, “Analysis of multilayered periodic structures using generalized scattering matrix theory,” IEEE Trans. Antennas Propag. 36, 511–517 (1988).
  17. M. Nevière and F. Montiel, “Deep gratings: a combination of the differential theory and the multiple reflection series,” Opt. Commun. 108, 1–7 (1994).
  18. F. Montiel and M. Nevière, “Differential theory of gratings: extension to deep gratings of arbitrary profile and permittivity through the R-matrix propagation algorithm,” J. Opt. Soc. Am. A 11, 3241–3250 (1994).
  19. L. Li, “Bremmer series, R-matrix propagation algorithm, and numerical modeling of diffraction gratings,” J. Opt. Soc. Am. A 11, 2829–2836 (1994).
  20. L. Li, “Formulation and comparison of two recursive matrix algorithms for modeling layered diffraction gratings,” J. Opt. Soc. Am. A 13, 1024–1035 (1996).
  21. R. Petit, ed., Electromagnetic Theory of Gratings (Springer-Verlag, Berlin, 1980).
  22. D. Maystre, “Electromagnetic study of photonic band gaps,” Pure Appl. Opt. 3, 975–993 (1994).
  23. D. Maystre, “Sur la diffraction et l’absorption par les réseaux utilisés dans l’infrarouge, le visible et l’ultraviolet; applications à la spectroscopie et au filtrage des ondes électromagnétiques,” Ph.D. thesis (Université Aix-Marseille 3, Marseille, France, 1974).
  24. L. Li, “Justification of matrix truncation in the modal methods of diffraction gratings,” J. Opt. A Pure Appl. Opt. 1, 531–536 (1999).
  25. P. Villeneuve, S. Fan, and J. D. Joannopoulos, “Microcavities in photonic crystals: mode symmetry, tunability, and coupling efficiency,” Phys. Rev. B 54, 7837–7842 (1996).
  26. A. Sentenac, J. J. Greffet, and F. Pincemin, “Structure of the electromagnetic field in a slab of photonic crystal,” J. Opt. Soc. Am. B 14, 339–347 (1997).
  27. G. Tayeb and D. Maystre, “Rigorous theoretical study of finite-size two-dimensional photonic crystals doped by microcavities,” J. Opt. Soc. Am. A 14, 3323–3332 (1997).
  28. Z. Yuan, J. W. Haus, and K. Sakoda, “Eigenmode symmetry for simple cubic lattices and the transmission spectra,” Opt. Express 3, 19–27 (1998).
  29. D. Felbacq, G. Tayeb, and D. Maystre, “Scattering by a random set of parallel cylinders,” J. Opt. Soc. Am. A 11, 2526–2538 (1994).
  30. J. P. Dowling and C. M. Bowden, “Anomalous index of refraction in photonic bandgap materials,” J. Mod. Opt. 41, 345–351 (1994).
  31. R. C. McPhedran, N. A. Nicorovici, and L. C. Botten, “The TEM mode and homogenization of doubly periodic structures,” J. Electromagn. Waves Appl. 11, 981–1012 (1997).
  32. D. Felbacq and G. Bouchitté, “Homogenization of a set of parallel fibers,” Waves Random Media 7, 245–256 (1997).
  33. G. Guida, D. Maystre, G. Tayeb, and P. Vincent, “Mean-field theory of two-dimensional metallic photonic crystals,” J. Opt. Soc. Am. B 15, 2308–2315 (1998).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited