OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Vol. 17, Iss. 6 — Jun. 1, 2000
  • pp: 1115–1123

Gaussian beams in hollow metal waveguides

Lee W. Casperson  »View Author Affiliations


JOSA A, Vol. 17, Issue 6, pp. 1115-1123 (2000)
http://dx.doi.org/10.1364/JOSAA.17.001115


View Full Text Article

Enhanced HTML    Acrobat PDF (266 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Various families of Gaussian beams have been explored previously to represent the propagation of nearly plane electromagnetic waves in media having at most quadratic transverse variations of the index of refraction and the gain or loss in the vicinity of the beam. However, such beams cannot directly represent the wave solutions for propagation in planar or rectangular waveguides, and sinusoidal mode functions are more commonly used for such waveguides. On the other hand, it is also useful to consider the possibility of recurring Gaussian beams that have an approximately Gaussian transverse profile at certain distinct planes along the propagation path. It is shown here that under some conditions recurring Gaussian beams can describe wave propagation in hollow metal waveguides, and they can also lead to efficient coupling between the waveguide fields and free-space beams.

© 2000 Optical Society of America

OCIS Codes
(230.0230) Optical devices : Optical devices
(230.7370) Optical devices : Waveguides
(230.7390) Optical devices : Waveguides, planar
(350.5500) Other areas of optics : Propagation

History
Original Manuscript: July 15, 1999
Manuscript Accepted: February 15, 2000
Published: June 1, 2000

Citation
Lee W. Casperson, "Gaussian beams in hollow metal waveguides," J. Opt. Soc. Am. A 17, 1115-1123 (2000)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-17-6-1115


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. G. D. Boyd, J. P. Gordon, “Confocal multimode resonator for millimeter through optical wavelength masers,” Bell Syst. Tech. J. 40, 489–508 (1961). [CrossRef]
  2. H. Kogelnik, “Imaging of optical modes—resonators with internal lenses,” Bell Syst. Tech. J. 44, 455–494 (1965). [CrossRef]
  3. H. Kogelnik, “On the propagation of Gaussian beams of light through lenslike media including those with a loss or gain variation,” Appl. Opt. 4, 1562–1569 (1965). [CrossRef]
  4. L. W. Casperson, S. D. Lunnam, “Gaussian modes in high loss laser resonators,” Appl. Opt. 14, 1193–1199 (1975), and references therein. [CrossRef] [PubMed]
  5. L. W. Casperson, “Beam modes in complex lenslike media and resonators,” J. Opt. Soc. Am. 66, 1373–1379 (1976). [CrossRef]
  6. A. A. Tovar, L. W. Casperson, “Generalized beam matrices: Gaussian beam propagation in misaligned complex optical systems,” J. Opt. Soc. Am. A 12, 1522–1533 (1995). [CrossRef]
  7. See for example, L. W. Casperson, D. G. Hall, A. A. Tovar, “Sinusoidal-Gaussian beams in complex optical systems,” J. Opt. Soc. Am. A 14, 3341–3348 (1997). [CrossRef]
  8. V. G. Artyushenko, L. N. Butvina, V. V. Voitsekhovskii, E. M. Dianov, I. S. Lisitskii, A. M. Prokhorov, V. K. Sysoev, “Polycrystalline waveguides with 0.35 dB/m losses at the 10.6 μm wavelength,” Sov. J. Quantum Electron. 11, 1–2 (1984). [CrossRef]
  9. K. Takahashi, N. Yoshida, M. Yokota, “Optical fibers for transmitting high-power CO2 laser beam,” Sumitomo Electr. Tech. Rev. 23, 203–210 (1984).
  10. J. A. Harrington, J. C. Harrington, C. C. Gregory, S. Harman, “Properties of alkali halide optical fibers,” in Optical Fibers in Medicine III, A. Katzir, ed., Proc. SPIE906, 176–182 (1988). [CrossRef]
  11. B. B. Chaudhuri, D. K. Paul, “Wave propagation through a hollow rectangular anisotropic dielectric guide,” IEEE J. Quantum Electron. QE-14, 557–560 (1978). [CrossRef]
  12. E. R. Dobrovinskaya, L. A. Litvinov, Y. A. Rubinov, “Influence of thermal and mechanical effects on the properties of a sapphire hollow waveguide of IR waveguide lasers,” Sov. J. Opt. Technol. 58, 411–413 (1991).
  13. M. Khelkhal, F. Herlemont, “Effective optical constants of alumina, silica and beryllia at CO2 laser wavelengths,” J. Opt. 23, 225–228 (1992). [CrossRef]
  14. C. C. Gregory, J. A. Harrington, “High peak power CO2 laser transmission by hollow sapphire waveguides,” Appl. Opt. 32, 3978–3980 (1993). [CrossRef] [PubMed]
  15. Y. Matsuura, T. Abel, J. A. Harrington, “Optical properties of small-bore hollow glass waveguides,” Appl. Opt. 34, 6842–6847 (1995). [CrossRef] [PubMed]
  16. R. K. Nubling, J. A. Harrington, “Hollow-waveguide delivery systems for high-power, industrial CO2 lasers,” Appl. Opt. 35, 372–380 (1996). [CrossRef] [PubMed]
  17. J. Dror, A. Inberg, R. Dahan, A. Elboim, N. Croitoru, “Influence of heating on performances of flexible hollow waveguides for the mid-infrared,” J. Phys. D 29, 569–577 (1996). [CrossRef]
  18. C. D. Rabii, J. A. Harrington, “Optical properties of dual core hollow waveguides,” Appl. Opt. 35, 6249–6252 (1996). [CrossRef] [PubMed]
  19. E. Garmire, T. McMahon, M. Bass, “Propagation of laser light in flexible hollow waveguides,” Appl. Opt. 15, 145–150 (1976). [CrossRef] [PubMed]
  20. E. Garmire, “Propagation of IR light in flexible hollow waveguides: further discussion,” Appl. Opt. 15, 3037–3039 (1976). [CrossRef] [PubMed]
  21. E. Garmire, T. McMahan, M. Bass, “Low-loss optical transmission through bent hollow metal waveguides,” Appl. Phys. Lett. 31, 92–94 (1977). [CrossRef]
  22. E. Garmire, T. McMahon, M. Bass, “Measurement of propagation in flexible infrared transmissive (FIT) waveguides,” IEEE J. Quantum Electron. QE-13, 21–22 (1977).
  23. T. Matsushima, I. Yamauchi, T. Sueta, “Flexible infrared-transmissive plastic waveguides coated with evaporated aluminum,” Jpn. J. Appl. Phys. 20, 1345–1346 (1981). [CrossRef]
  24. J. Gombert, M. Gazard, “Attenuation characteristics of a planar dielectric coated metallic waveguide for 10.6 μm radiation,” Opt. Commun. 58, 307–310 (1986). [CrossRef]
  25. M. Miyagi, S. Karasawa, “A comparative study of rectangular and circular dielectric-coated metallic waveguides for CO2 laser light: theory,” Opt. Commun. 68, 18–20 (1988). [CrossRef]
  26. S. V. Azizbekyan, V. G. Artyushenko, K. I. Kalaidzhyan, M. M. Mirakyan, I. L. Pyl’nov, “Bending loss of hollow metal waveguides for mid-infrared range,” Sov. Tech. Phys. Lett. 15, 602–603 (1989).
  27. S. Karasawa, M. Miyagi, T. Nakamura, H. Ishikawa, “Fabrication of dielectric-coated rectangular hollow waveguides for CO2 laser light transmission,” Trans. Inst. Electron. Inf. Commun. Eng. C-I J72C-I, 637–641 (1989).
  28. S. V. Azizbekyan, V. G. Artyushenko, E. M. Dianov, K. I. Kalaidzhyan, M. M. Mirakyan, “Transmission of hollow metal waveguides in the mid-infrared region,” Sov. Phys. Tech. Phys. 35, 392–393 (1990).
  29. V. G. Artyushenko, K. I. Kalaidzhyan, M. M. Mirakyan, “Flexible hollow waveguides for the mid-IR range,” Sov. Phys. Tech. Phys. 36, 46–49 (1991).
  30. H. Machida, H. Ishikawa, M. Miyagi, “Low-loss lead fluoride-coated square waveguide for CO2 laser light transmission,” Electron. Lett. 27, 2068–2070 (1991). [CrossRef]
  31. Y. Matsuura, M. Miyagi, “Bending losses and beam profiles of zinc selenide-coated silver waveguides for carbon dioxide laser light,” Appl. Opt. 31, 6441–6445 (1992). [CrossRef] [PubMed]
  32. H. Machida, Y. Matsuura, H. Ishikawa, M. Miyagi, “Transmission properties of rectangular hollow waveguides for CO2 laser light,” Appl. Opt. 31, 7617–7622 (1992). [CrossRef] [PubMed]
  33. Y. Matsuura, M. Miyagi, “Er:YAG, CO, and CO2 laser delivery by ZnS-coated Ag hollow waveguides,” Appl. Opt. 32, 6598–6601 (1993). [CrossRef] [PubMed]
  34. T. Abel, J. Hirsch, J. A. Harrington, “Hollow glass waveguides for broadband infrared transmission,” Opt. Lett. 19, 1034–1036 (1994). [CrossRef] [PubMed]
  35. Y. Matsuura, T. Abel, J. Hirsch, J. A. Harrington, “Small-bore hollow waveguide for delivery of near singlemode IR laser radiation,” Electron. Lett. 30, 1688–1690 (1994). [CrossRef]
  36. R. K. Nubling, J. A. Harrington, “Hollow-waveguide delivery systems for high-power, industrial CO2 lasers,” Appl. Opt. 35, 372–380 (1996). [CrossRef] [PubMed]
  37. D. Su, S. Somkuarnpanit, D. R. Hall, J. D. C. Jones, “Thermal effects in a hollow waveguide beam launch for CO2 laser power delivery,” Appl. Opt. 35, 4787–4789 (1996). [CrossRef] [PubMed]
  38. Jiwang Dal, J. A. Harrington, “High-peak-power, pulsed CO2 laser light delivery by hollow glass waveguides,” Appl. Opt. 36, 5072–5077 (1997). [CrossRef]
  39. L. W. Casperson, “Grazing reflection of Gaussian beams,” Appl. Opt. 38, 554–562 (1999). [CrossRef]
  40. L. W. Casperson, “Gaussian light beams in inhomogeneous media,” Appl. Opt. 12, 2434–2441 (1973). [CrossRef] [PubMed]
  41. A. A. Tovar, L. W. Casperson, “Generalized beam matrices: Gaussian beam propagation in misaligned complex optical systems,” J. Opt. Soc. Am. A 12, 1522–1533 (1995), Eq. (24). [CrossRef]
  42. Y. Matsura, M. Miyagi, “Flexible hollow waveguides for delivery of excimer-laser light,” Opt. Lett. 23, 1226–1228 (1998). [CrossRef]
  43. J. H. Eberly, N. B. Narozhny, J. J. Sanchez-Mondragon, “Periodic spontaneous collapse and revival in a simple quantum model,” Phys. Rev. Lett. 44, 1323–1326 (1980). [CrossRef]
  44. D. L. Aronstein, C. R. Stroud, “Fractional wave-function revivals in the infinite square well,” Phys. Rev. A 55, 4526–4537 (1997), and references therein. [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited