OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Vol. 17, Iss. 6 — Jun. 1, 2000
  • pp: 1124–1131

Three-dimensional finite-element beam propagation method: assessments and developments

Luca Vincetti, Annamaria Cucinotta, Stefano Selleri, and Maurizio Zoboli  »View Author Affiliations

JOSA A, Vol. 17, Issue 6, pp. 1124-1131 (2000)

View Full Text Article

Acrobat PDF (593 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



In recent years the finite-element method (FEM) has been widely applied to three-dimensional beam propagation analysis, and several FEM propagators have been presented. Up to now, as far as we know, an exhaustive, deep, and comparative analysis of these formulations and of the related algorithms has never been presented. We critically analyze and numerically compare, to our knowledge for the first time, different vectorial, semivectorial, and scalar formulations in order to check their performances, point out weaknesses, and suggest future developments. The results obtained highlight once more the inadequacy of scalar approaches in dealing with actual photonics devices and suggest vector formulations worthy of further development and future research.

© 2000 Optical Society of America

OCIS Codes
(000.4430) General : Numerical approximation and analysis
(130.3120) Integrated optics : Integrated optics devices
(230.5440) Optical devices : Polarization-selective devices
(230.7370) Optical devices : Waveguides

Luca Vincetti, Annamaria Cucinotta, Stefano Selleri, and Maurizio Zoboli, "Three-dimensional finite-element beam propagation method: assessments and developments," J. Opt. Soc. Am. A 17, 1124-1131 (2000)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. J. Van Roey, J. Van der Donk, and P. Lagasse, “Beam propagation method: analysis and assessment,” J. Opt. Soc. Am. 71, 803–810 (1981).
  2. H. E. Hernandez-Figueroa, “Efficient 3-D split operator finite element algorithm for scalar integrated optics,” IEEE Photon. Technol. Lett. 9, 351–353 (1997).
  3. Y. Tsuji, M. Koshiba, and T. Shiraishi, “Finite element beam propagation method for three-dimensional optical waveguide structures,” J. Lightwave Technol. 15, 1728–1734 (1991).
  4. E. Montanari, S. Selleri, L. Vincetti, and M. Zoboli, “Finite-element full-vectorial propagation analysis for three dimensional z-varying optical waveguides,” J. Lightwave Technol. 16, 703–714 (1998).
  5. D. Schulz, C. Glingener, M. Bludszuweit, and E. Voges, “Mixed finite element beam propagation method,” J. Lightwave Technol. 16, 1336–1342 (1998).
  6. Y. Tsuji and M. Koshiba, “Finite element beam propagation method with perfectly matched layer boundary conditions for three-dimensional optical waveguides,” presented at the 4th International Workshop on Finite Elements for Microwave Engineering, Poitiers, France, Section F, July 10–11, 1998.
  7. A. Cucinotta, G. Pelosi, S. Selleri, L. Vincetti, and M. Zoboli, “Perfectly matched anisotropic layers for optical waveguides analysis through the finite element beam propagation method,” Microwave Opt. Technol. Lett. 23, 67–69 (1999).
  8. O. Mitomi and K. Kasaya, “An improved semivectorial beam propagation method using a finite-element scheme,” IEEE Photon. Technol. Lett. 10, 1754–1756 (1998).
  9. A. Cucinotta, S. Selleri, and L. Vincetti, “Nonlinear finite-element semivectorial propagation method for three dimensional optical waveguides,” IEEE Photon. Technol. Lett. 11, 209–211 (1999).
  10. T. B. Koch, J. B. Davies, F. A. Fernandez, and R. Maerz, “Computation of wave propagation in integrated optical devices using z-transient variational principles,” IEEE Trans. Magn. 27, 3876–3879 (1991).
  11. S. V. Polstyanko and J. F. Lee, “H1 (curl) tangential vector finite element method for modeling anisotropic optical fibers,” J. Lightwave Technol. 13, 2290–2295 (1995).
  12. O. Zhuromskyy, M. Lohmeyer, N. Bahlmann, H. Dotsch, P. Hertel, and A. F. Popkov, “Analysis of polarization independent Mach–Zehnder-type integrated optical isolator,” J. Lightwave Technol. 17, 1200–1205 (1999).
  13. A. Cucinotta, E. Montanari, S. Selleri, L. Vincetti, and M. Zoboli, “Finite-element full-vectorial propagation analysis for three dimensional anisotropic waveguides,” presented at the International Conference on Electromagnetics in Advanced Applications (ICEAA 97), Torino, Italy, September 15–18, 1997.
  14. P. C. Lee and E. Voges, “Three-dimensional semi-vectorial wide-angle beam propagation method,” J. Lightwave Technol. 12, 215–224 (1994).
  15. S. Selleri and M. Zoboli, “Performance comparison of finite element approaches for electromagnetic waveguides,” J. Opt. Soc. Am. A 14, 1460–1466 (1997).
  16. B. M. Dillon, P. T. S. Liu, and J. P. Webb, “Spurious modes in quadrilateral and triangular edge elements,” Int. J. Computation Math. Electr. Electron. Eng. 13, Suppl. A, 311–316 (1994).
  17. Harwell Subroutine Library—Release 12, AEA Technology, Harwell Laboratory, Oxfordshire, England, December 1995.
  18. P. L. Liu and B. J. Li, “Semivectorial beam propagation by Lanczos reduction,” IEEE J. Quantum Electron. 29, 2385–2389 (1993).
  19. E. E. Kriezis and A. G. Papagiannakis, “A joint finite-difference and FFT full vectorial beam propagation scheme,” J. Lightwave Technol. 13, 692–700 (1995).
  20. J. J. G. M. Van der Tol, J. W. Pedersen, E. G. Metaal, F. Hakimzadeh, Y. S. Oei, F. H. Groen, and I. Moerman, “Realization of a short integrated optic passive polarization converter,” IEEE Photon. Technol. Lett. 7, 893–895 (1995).
  21. V. P. Tzolov and M. Fontaine, “A passive polarization converter free of longitudinally periodic structure,” Opt. Commun. 127, 7–13 (1996).
  22. J. Z. Huang, G. Nagy, R. Scamozzino, and R. M. Osgood, “First realization of an ultracompact and single-mode integrated optical passive polarization converter,” presented at the 9th European Conference on Integrated Optics (ECIO’99) Torino, Italy, April 13–16, 1999.
  23. H. E. Hernandez-Figueroa, “Simple nonparaxial beam-propagation method for integrated optics,” J. Lightwave Technol. 12, 644–649 (1994).
  24. S. Selleri, L. Vincetti, and A. Cucinotta, “Finite element method resolution of nonlinear Helmholtz equation,” Opt. Quantum Electron. 30, 457–465 (1998).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited