OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Vol. 17, Iss. 6 — Jun. 1, 2000
  • pp: 947–954

Elevation of Vernier thresholds during image motion depends on target configuration

Harold E. Bedell, Susana T. L. Chung, and Saumil S. Patel  »View Author Affiliations

JOSA A, Vol. 17, Issue 6, pp. 947-954 (2000)

View Full Text Article

Enhanced HTML    Acrobat PDF (158 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Previously we showed that thresholds for abutting Vernier targets are unaffected by motion, as long as the targets are processed by the same spatial-frequency channel at each velocity and remain equally detectable [Invest. Ophthalmol. Visual Sci. (Suppl.) 37, S734 (1996)]. In this study we compared Vernier thresholds for stationary and moving abutting and nonabutting targets (gaps = 0, 18, and 36 arc min) for velocities of 0–16 deg/s. The Vernier targets were spatially filtered vertical lines (peak spatial frequency = 3.3 or 6.6 c/deg), presented at contrast levels of two, four, and eight times the detection threshold of each component line. Unlike the results for abutting targets, Vernier thresholds for nonabutting targets worsen with velocity as well as gap size. The results for abutting Vernier targets are consistent with the hypothesis that thresholds are mediated by oriented spatial filters, whose responses increase proportionally with the stimulus contrast. The velocity-dependent thresholds found for nonabutting Vernier targets can be explained on the basis of local-sign comparisons if the comparison process is assumed to include a small amount of temporal noise.

© 2000 Optical Society of America

OCIS Codes
(330.1070) Vision, color, and visual optics : Vision - acuity
(330.1800) Vision, color, and visual optics : Vision - contrast sensitivity
(330.4150) Vision, color, and visual optics : Motion detection
(330.5510) Vision, color, and visual optics : Psychophysics
(330.6100) Vision, color, and visual optics : Spatial discrimination
(330.7310) Vision, color, and visual optics : Vision

Original Manuscript: July 21, 1999
Revised Manuscript: December 2, 1999
Manuscript Accepted: December 2, 1999
Published: June 1, 2000

Harold E. Bedell, Susana T. L. Chung, and Saumil S. Patel, "Elevation of Vernier thresholds during image motion depends on target configuration," J. Opt. Soc. Am. A 17, 947-954 (2000)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. G. Westheimer, “Visual acuity and hyperacuity,” Invest. Ophthalmol. 14, 570–572 (1975). [PubMed]
  2. G. Westheimer, “The spatial sense of the eye,” Invest. Ophthalmol. Visual Sci. 18, 893–912 (1979).
  3. J. M. Findlay, “Feature detectors and Vernier acuity,” Nature (London) 241, 135–137 (1973). [CrossRef]
  4. H. R. Wilson, “Responses of spatial mechanisms can explain hyperacuity,” Vision Res. 26, 453–469 (1986). [CrossRef] [PubMed]
  5. S. J. Waugh, D. M. Levi, T. Carney, “Orientation, masking, and Vernier acuity for line targets,” Vision Res. 33, 1619–1638 (1993). [CrossRef] [PubMed]
  6. T. Carney, S. A. Klein, “Optimal spatial localization is limited by contrast sensitivity,” Vision Res. 39, 503–511 (1999). [CrossRef] [PubMed]
  7. G. D. Sullivan, K. Oatley, N. S. Sutherland, “Vernier acuity as affected by target length and separation,” Percept. Psychophys. 12, 438–444 (1972). [CrossRef]
  8. S. A. Klein, D. M. Levi, “Position sense of the peripheral retina,” J. Opt. Soc. Am. A 4, 1543–1553 (1987). [CrossRef] [PubMed]
  9. D. M. Levi, S. A. Klein, “The role of separation and eccentricity in encoding position,” Vision Res. 30, 557–585 (1990). [CrossRef] [PubMed]
  10. S. J. Waugh, D. M. Levi, “Visibility and Vernier acuity for separated targets,” Vision Res. 33, 539–552 (1993). [CrossRef] [PubMed]
  11. R. P. O’Shea, D. E. Mitchell, “Vernier acuity with opposite-contrast stimuli,” Perception 19, 207–221 (1990). [CrossRef] [PubMed]
  12. D. M. Levi, S. J. Waugh, “Position acuity with opposite-contrast polarity features: evidence for a nonlinear collector mechanism for position acuity?” Vision Res. 36, 573–588 (1996). [CrossRef] [PubMed]
  13. E. Hering, “Über die Grenzen der Sehscharfe,” Ber. Math. Phys. Classe konig. sachs. Ges. Wiss. (Leipzig)16–24 (1899); cited by Levi and Waugh (Ref. 12).
  14. G. Westheimer, S. P. McKee, “Visual acuity in the presence of retinal image motion,” J. Opt. Soc. Am. 65, 847–850 (1975). [CrossRef] [PubMed]
  15. M. J. Morgan, S. Benton, “Motion-deblurring in human vision,” Nature 340, 385–386 (1989). [CrossRef] [PubMed]
  16. T. Carney, D. A. Silverstein, S. A. Klein, “Vernier acuity during image rotation and translation: visual performance limits,” Vision Res. 35, 1951–1964 (1995). [CrossRef] [PubMed]
  17. S. T. L. Chung, D. M. Levi, H. E. Bedell, “Vernier in motion: What accounts for the threshold elevation?” Vision Res. 36, 2395–2410 (1996). [CrossRef] [PubMed]
  18. S. T. L. Chung, H. E. Bedell, “Moving Vernier with band-pass filtered stimuli,” Invest. Ophthalmol. Visual Sci. (Suppl.) 37, S734 (1996).
  19. M. S. Landy, Y. Cohen, G. Sperling, “HIPS: image processing under UNIX. Software and applications,” Behav. Res. Methods Instrum. Comput. 16, 199–216 (1984). [CrossRef]
  20. S. A. Klein, E. Casson, T. Carney, “Vernier acuity as line and dipole detection,” Vision Res. 30, 1703–1719 (1990). [CrossRef] [PubMed]
  21. M. J. Morgan, T. S. Aiba, “Vernier acuity predicted from changes in the light distribution of the retinal image,” Spatial Vis. 1, 151–161 (1985). [CrossRef]
  22. T. Banton, D. M. Levi, “Binocular summation in Vernier acuity,” J. Opt. Soc. Am. A 8, 673–679 (1991). [CrossRef] [PubMed]
  23. S. J. Waugh, D. M. Levi, “Visibility, timing, and Vernier acuity,” Vision Res. 33, 505–526 (1993). [CrossRef] [PubMed]
  24. J. Krauskopf, B. Farell, “Vernier acuity: effects of chromatic content, blur and contrast,” Vision Res. 31, 735–749 (1991). [CrossRef] [PubMed]
  25. A. Bradley, B. C. Skottun, “Effects of contrast and spatial frequency on Vernier acuity,” Vision Res. 27, 1817–1824 (1987). [CrossRef] [PubMed]
  26. D. Whitaker, D. MacVeigh, “Interation of spatial frequency and separation in Vernier acuity,” Vision Res. 31, 1205–1212 (1991). [CrossRef]
  27. D. Whitaker, “What part of a Vernier stimulus determines performance?” Vision Res. 33, 27–32 (1993). [CrossRef] [PubMed]
  28. D. M. Levi, S. A. Klein, H. Wang, “Discrimination of position and contrast in amblyopic and peripheral vision,” Vision Res. 34, 3293–3313 (1994). [CrossRef] [PubMed]
  29. F. W. Weymouth, E. E. Andersen, H. L. Averill, “Retinal mean local sign: a new view of the relation of the retinal mosaic to visual perception,” Am. J. Physiol. 63, 410–411 (1923).
  30. G. Westheimer, S. P. McKee, “Spatial configurations for visual hyperacuity,” Vision Res. 17, 941–947 (1977). [CrossRef] [PubMed]
  31. D. Whitaker, H. Walker, “Centroid evaluation in the Vernier alignment of random dot clusters,” Vision Res. 28, 777–784 (1988). [CrossRef] [PubMed]
  32. R. F. Hess, S. R. Dakin, D. Badcock, “Localization of element clusters by the human visual system,” Vision Res. 34, 2439–2451 (1994). [CrossRef] [PubMed]
  33. D. R. Badcock, R. F. Hess, K. Dobbins, “Localization of element clusters: multiple cues,” Vision Res. 36, 1467–1472 (1996). [CrossRef] [PubMed]
  34. S. S. Patel, H. E. Bedell, M. T. Ukwade, “Vernier judgments in the absence of regular shape information,” Vision Res. 39, 2349–2360 (1999). [CrossRef] [PubMed]
  35. D. M. Levi, G. Westheimer, “Spatial interval discrimination in the human fovea: What delimits the interval?” J. Opt. Soc. Am. A 4, 1304–1313 (1987). [CrossRef] [PubMed]
  36. C. A. Burbeck, “Position and spatial frequency in large-scale localization judgments,” Vision Res. 27, 417–427 (1987). [CrossRef] [PubMed]
  37. A. Toet, “Visual perception of spatial order,” Ph.D. dissertation (Ryksuniversiteit, Utrecht, The Netherlands, 1987).
  38. D. M. Levi, B. Jiang, S. A. Klein, “Spatial interval discrimination with blurred lines: Black and white are separate but not equal at multiple spatial scales,” Vision Res. 30, 1735–1750 (1990). [CrossRef] [PubMed]
  39. A. J. Mussap, D. M. Levi, “Spatial properties of filters underlying Vernier acuity revealed by masking: evidence for collator mechanisms,” Vision Res. 36, 2459–2473 (1996). [CrossRef] [PubMed]
  40. A. Toet, H. L. van Eekhout, J. J. Simons, J. J. Koenderink, “Scale invariant features of differential spatial displacement discrimination,” Vision Res. 27, 441–452 (1987). [CrossRef] [PubMed]
  41. R. F. Hess, I. E. Holliday, “The coding of spatial position by the human visual system: effects of spatial scale and contrast,” Vision Res. 32, 1085–1097 (1992). [CrossRef] [PubMed]
  42. E. Kaplan, R. M. Shapley, “The primate retina contains two types of ganglion cells, with high and low contrast sensitivity,” Proc. Natl. Acad. Sci. USA 83, 2755–2757 (1986). [CrossRef] [PubMed]
  43. D. H. Hubel, M. S. Livingstone, “Color and contrast sensitivity in lateral geniculate body and primary visual cortex of the macaque monkey,” J. Neurosci. 10, 2223–2237 (1990). [PubMed]
  44. G. Sclar, J. H. R. Maunsell, P. Lennie, “Coding of image contrast in central visual pathways of the macaque monkey,” Vision Res. 30, 1–10 (1990). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited