OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Vol. 17, Iss. 9 — Sep. 1, 2000
  • pp: 1505–1515

Motion perception at scotopic light levels

Karl R. Gegenfurtner, Helmut M. Mayser, and Lindsay T. Sharpe  »View Author Affiliations


JOSA A, Vol. 17, Issue 9, pp. 1505-1515 (2000)
http://dx.doi.org/10.1364/JOSAA.17.001505


View Full Text Article

Acrobat PDF (191 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Although the spatial and temporal properties of rod-mediated vision have been extensively characterized, little is known about scotopic motion perception. To provide such information, we determined thresholds for the detection and identification of the direction of motion of sinusoidal grating patches moving at speeds from 1 to 32 deg/s, under scotopic light levels, in four different types of observers: three normals, a rod monochromat (who lacks all cone vision), an S-cone monochromat (who lacks M- and L-cone vision), and four deuteranopes (who lack M-cone vision). The deuteranopes, whose motion perception does not differ from that of normals, allowed us to measure rod and L-cone thresholds under silent substitution conditions and to compare directly the perceived velocity for moving stimuli detected by either rod or cone vision at the same light level. We find, for rod as for cone vision, that the direction of motion can be reliably identified very near to detection threshold. In contrast, the perceived velocity of rod-mediated stimuli is reduced by approximately 20% relative to cone-mediated stimuli at temporal frequencies below 4 Hz and at all intensity levels investigated (0.92 to −1.12 log cd m−2). Most likely, the difference in velocity perception is distal in origin because rod and cone signals converge in the retina and further processing of their combined signals in the visual cortex is presumably identical. To account for the difference, we propose a model of velocity, in which the greater temporal averaging of rod signals in the retina leads to an attenuation of the motion signal in the detectors tuned to high velocities.

© 2000 Optical Society of America

OCIS Codes
(330.1880) Vision, color, and visual optics : Detection
(330.4150) Vision, color, and visual optics : Motion detection
(330.5310) Vision, color, and visual optics : Vision - photoreceptors
(330.5510) Vision, color, and visual optics : Psychophysics

Citation
Karl R. Gegenfurtner, Helmut M. Mayser, and Lindsay T. Sharpe, "Motion perception at scotopic light levels," J. Opt. Soc. Am. A 17, 1505-1515 (2000)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-17-9-1505


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. R. F. Hess, L. T. Sharpe, and K. Nordby, eds., Night Vision: Basic, Clinical, and Applied Aspects (Cambridge U. Press, Cambridge, UK, 1990).
  2. T. Takeuchi and K. K. De Valois, “Velocity discrimination in scotopic vision,” Invest. Ophthalmol. Visual Sci. 39, 1077 (1998).
  3. K. R. Gegenfurtner, H. Mayser, and L. T. Sharpe, “Seeing movement in the dark,” Nature 398, 475–476 (1999).
  4. E. Grossman, R. Blake, and T. Palmieri, “Motion perception at scotopic light levels,” Invest. Ophthalmol. Visual Sci. Suppl. 39, 1076 (1998).
  5. J. D. Conner and D. I. A. MacLeod, “Rod photoreceptors detect rapid flicker,” Science 195, 689–699 (1977).
  6. R. F. Hess and K. Nordby, “Spatial and temporal limits of vision in the achromat,” J. Physiol. (London) 371, 365–385 (1986).
  7. R. J. Snowden, R. F. Hess, and S. J. Waugh, “The processing of temporal modulation at different levels of retinal illuminance,” Vision Res. 35, 775–789 (1995).
  8. S. M. Zeki, “Functional organization of a visual area in the posterior bank of the superior temporal sulcus of the rhesus monkey,” J. Physiol. (London) 236, 549–573 (1974).
  9. T. D. Albright, “Direction and orientation selectivity of neurons in visual area MT of the macaque,” J. Neurophysiol. 52, 1106–1130 (1985).
  10. D. J. Felleman and D. C. Van Essen, “Distributed hierarchical processing in the primate cerebral cortex,” Cereb. Cortex 1, 1–47 (1991).
  11. A. B. Watson, A. J. Ahumada, and J. E. Farrell, “Window of visibility: a psychophysical theory of fidelity in time-sampled visual motion displays,” J. Opt. Soc. Am. A 3, 300–307 (1986).
  12. S. J. Anderson and D. C. Burr, “Spatial and temporal selectivity of the human motion detection system,” Vision Res. 25, 1147–1154 (1985).
  13. R. F. Hess and R. J. Snowden, “Temporal properties of human visual filters: number, shapes and spatial covariation,” Vision Res. 32, 47–59 (1992).
  14. K. R. Gegenfurtner and M. J. Hawken, “Interactions of color and motion in the visual pathways,” Trends Neurosci. 19, 394–401 (1996).
  15. J. H. Maunsell, T. A. Nealey, and D. D. DePriest, “Magnocellular and parvocellular contributions to responses in the middle temporal visual area (MT) of the macaque monkey,” J. Neurosci. 10, 3323–3334 (1990).
  16. V. P. Ferrera, T. A. Nealey, and J. H. R. Maunsell, “Responses in macaque visual area V4 following inactivation of the parvocellular and magnocellular LGN pathways,” J. Neurosci. 14, 2080–2088 (1994).
  17. V. Virsu and B. B. Lee, “Light adaptation in cells of macaque lateral geniculate nucleus and its relation to human light adaptation,” J. Neurophysiol. 50, 864–877 (1983).
  18. V. Virsu, B. B. Lee, and O. D. Creutzfeldt, “Mesopic spectral responses and the Purkinje shift of macaque lateral geniculate cells,” Vision Res. 27, 191–200 (1987).
  19. K. Purpura, E. Kaplan, and R. M. Shapley, “Background light and the contrast gain of primate retinal ganglion cells,” Proc. Natl. Acad. Sci. USA 85, 4534–4537 (1988).
  20. B. B. Lee, V. C. Smith, J. Pokorny, and J. Kremers, “Rod inputs to macaque ganglion cells,” Vision Res. 37, 2813–2828 (1997).
  21. P. Lennie and M. D. Fairchild, “Ganglion cell pathways for rod vision,” Vision Res. 34, 477–482 (1994).
  22. P. Sterling, M. Freed, and R. G. Smith, “Microcircuitry and functional architecture of the cat retina,” Trends Neurosci. 9, 186–193 (1986).
  23. N. W. Daw, R. J. Jensen, and W. J. Brunken, “Rod pathways in mammalian retinae,” Trends Neurosci. 13, 110–115 (1990).
  24. H. Kolb and R. Nelson, “Rod pathways in the retina of the cat,” Vision Res. 23, 301–302 (1983).
  25. H. Wässle and B. B. Boycott, “Functional architecture of the mammalian retina,” Physiol. Rev. 71, 447–480 (1991).
  26. E. Soucy, Y. Wang, S. Nirenberg, J. Nathans, and M. Meister, “A novel signaling pathway from rod photoreceptors to ganglion cells in mammalian retina,” Neuron 21, 481–493 (1998).
  27. J. D. Conner, “The temporal properties of rod vision,” J. Physiol. (London) 332, 139–155 (1982).
  28. L. T. Sharpe, A. Stockman, and D. I. A. MacLeod, “Rod flicker perception: scotopic duality, phase lags and destructive interference,” Vision Res. 29, 1539–1559 (1989).
  29. A. Stockman, L. T. Sharpe, E. Zrenner, and K. Nordby, “Slow and fast pathways in the human rod visual system: ERG and psychophysics,” J. Opt. Soc. Am. A 8, 1657–1665 (1991).
  30. L. T. Sharpe, C. C. Fach, and A. Stockman, “The spectral properties of the two rod pathways,” Vision Res. 33, 2705–2720 (1993).
  31. L. T. Sharpe, J. Hofmeister, C. C. Fach, and A. Stockman, “Spatial relations of flicker signals in the two rod pathways,” J. Physiol. (London) 474, 421–431 (1994).
  32. A. Stockman, L. T. Sharpe, K. Rüther, and K. Nordby, “Two signals in the human rod visual system: a model based on electrophysiological data,” Visual Neurosci. 12, 951–970 (1995).
  33. L. T. Sharpe and A. Stockman, “Rod pathways: the importance of seeing nothing,” Trends Neurosci. 22, 497–504 (1999).
  34. H. Mayser, T. Eckle, D. I. Braun, K. R. Gegenfurtner, and L. T. Sharpe, “Motion perception at scotopic levels,” Invest. Ophthalmol. Visual Sci. Suppl. 39, 1076 (1998).
  35. L. T. Sharpe and K. Nordby, “The photoreceptors in the achromat,” in Night Vision: Basic, Clinical, and Applied Aspects, R. F. Hess, L. T. Sharpe, and K. Nordby, eds. (Cambridge U. Press, Cambridge, UK, 1990), pp. 335–389.
  36. S. Kohl, T. Marx, I. Giddings, H. Jägle, S. G. Jacobson, E. Apfelstedt-Sylla, E. Zrenner, L. T. Sharpe, and B. Wissinger, “Total colorblindness is caused by mutations in the gene encoding the α-subunit of the cone photoreceptor cGMP-gated cation channel,” Nature Gen. 19, 257–259 (1998).
  37. J. Nathans, I. H. Maumenee, E. Zrenner, B. Sadowski, L. T. Sharpe, R. A. Lewis, E. Hansen, T. Rosenberg, M. Schwartz, J. Heckenlively, E. Traboulsi, R. Klingaman, T. Bech-Hansen, G. R. LaRoche, D. Alcorn, R. Pagan, W. Murphy, and R. Weleber, “Genetic heterogeneity among blue-cone monochromats,” Am. J. Hum. Genet. 53, 987–1000 (1993).
  38. A. Stockman, L. T. Sharpe, and C. C. Fach, “The spectral sensitivity of the human short-wavelength sensitivity cones derived from thresholds and color matches,” Vision Res. 39, 2901–2927 (1999).
  39. L. T. Sharpe, A. Stockman, H. Jägle, and J. Nathans, “Opsin genes, cone photopigments and color vision,” in Color Vision: From Genes to Perception, K. R. Gegenfurtner and L. T. Sharpe, eds. (Cambridge U. Press, Cambridge, UK, 1999), pp. 3–51.
  40. L. T. Sharpe, A. Stockman, H. Jägle, H. Knau, G. Klausen, A. Reitner, and J. Nathans, “Red, green, and red–green hybrid photopigments in the human retina: correlations between deduced protein sequences and spectral sensitivities measured psychophysically,” J. Neurosci. 18, 10053–10069 (1998).
  41. H. Jägle, L. T. Sharpe, and J. Nathans, “Rayleigh matches and X-chromosome-linked pigment genes,” available from Herbert Jägle at Universitätsaugenklinik, Forschungsstelle für Experimentelle Ophthalmologie, Röntgenweg 11, D-72076 Tübingen, Germany.
  42. D. Brainard, “Calibration of a computer controlled color monitor,” Color Res. Appl. 14, 23–34 (1989).
  43. G. Wyszecki and W. S. Stiles, Color Science: Concepts and Methods, Quantitative Data and Formulae, 2nd ed. (Wiley, New York, 1982).
  44. H. Irtel, “Computing data for color-vision modeling,” Behav. Res. Methods Instrum. Comput. 24, 397–401 (1992).
  45. V. C. Smith and J. Pokorny, “Spectral sensitivity of the foveal cone photopigments between 400 and 500 nm,” Vision Res. 15, 161–171 (1975).
  46. A. B. Watson, P. G. Thompson, B. J. Murphy, and J. Nachmias, “Summation and discrimination of gratings moving in opposite directions,” Vision Res. 20, 341–347 (1980).
  47. P. Thompson, “Discrimination of moving gratings at and above detection threshold,” Vision Res. 23, 1533–1538 (1983).
  48. D. T. Lindsey and D. Y. Teller, “Motion at isoluminance: discrimination/detection ratios for moving isoluminant gratings,” Vision Res. 30, 1751–1761 (1990).
  49. P. Cavanagh and S. Anstis, “The contribution of color to motion in normal and color-deficient observers,” Vision Res. 31, 2109–2148 (1991).
  50. K. T. Mullen and J. C. Boulton, “Absence of smooth motion perception in color vision,” Vision Res. 32, 483–488 (1992).
  51. J. Palmer, L. A. Mobley, and D. Y. Teller, “Motion at isoluminance: discrimination/detection ratios and the summation of luminance and chromatic signals,” J. Opt. Soc. Am. A 10, 1353–1362 (1993).
  52. A. B. Metha, A. J. Vingrys, and D. R. Badcock, “Detection and discrimination of moving stimuli: the effects of color, luminance, and encentricity,” J. Opt. Soc. Am. A 11, 1697–1709 (1994).
  53. K. R. Gegenfurtner and M. J. Hawken, “Temporal and chromatic properties of motion mechanisms,” Vision Res. 35, 1547–1563 (1995).
  54. C. F. Stromeyer, R. E. Kronauer, A. Ryu, A. Chaparro, and R. T. Eskew, “Contributions of human long-wave and middle-wave cones to motion detection,” J. Physiol. (London) 485.1, 221–243 (1995).
  55. H. Levitt, “Transformed up–down methods in psychoacoustics,” J. Acoust. Soc. Am. 49, 467–477 (1971).
  56. B. A. Wandell, A. B. Poirson, H. A. Baseler, G. M. Boynton, A. Huk, S. Gandhi, and L. T. Sharpe, “Color signals in human motion-selective cortex,” Neuron 24, 901–909 (1999).
  57. A. M. Derrington and G. B. Henning, “Detecting and discriminating the direction of motion of luminance and colour gratings,” Vision Res. 33, 799–811 (1993).
  58. P. Thompson, “Perceived rate of movement depends on contrast,” Vision Res. 22, 377–380 (1982).
  59. L. S. Stone and P. Thompson, “Human speed perception is contrast dependent,” Vision Res. 32, 1535–1549 (1992).
  60. M. J. Hawken, K. R. Gegenfurtner, and C. Tang, “Contrast dependence of colour and luminance motion mechanisms in human vision,” Nature (London) 367, 268–270 (1994).
  61. K. R. Gegenfurtner and M. J. Hawken, “Perceived speed of luminance, chromatic and non-Fourier stimuli: influence of contrast and temporal frequency,” Vision Res. 36, 1281–1290 (1996).
  62. R. F. Dougherty, W. A. Press, and B. A. Wandell, “Perceived speed of colored stimuli,” Neuron 24, 893–899 (1999).
  63. B. Hassenstein and W. Reichardt, “Systemtheoretische Analyse der Zeit-, Reihenfolgen- und Vorzeichenauswertung bei der Bewegungsanalyse des Rüsselkäfers, Chlorophanus,” Z. Naturforsch. B 11, 513–524 (1956).
  64. E. H. Adelson and J. R. Bergen, “Spatiotemporal energy models for the perception of motion,” J. Opt. Soc. Am. A 2, 284–299 (1985).
  65. A. B. Watson and A. J. Ahumada, “Model of human visual-motion sensing,” J. Opt. Soc. Am. A 2, 322–342 (1985).
  66. J. P. H. van Santen and G. Sperling, “Elaborated Reichardt detectors,” J. Opt. Soc. Am. A 2, 300–321 (1985).
  67. C. H. Graham, R. M. Brown, and F. A. Mote, “The relation of size of stimulus and intensity in the human eye. I. Intensity threshold for white light,” J. Exp. Psychol. 24, 555–573 (1939).
  68. H. B. Barlow, “Temporal and spatial summation in human vision at different background intensities,” J. Physiol. (London) 141, 337–350 (1958).
  69. R. A. Weale, “Retinal summation and human visual threshold,” Nature 181, 154–156 (1958).
  70. P. E. Hallett, F. H. C. Marriott, and F. C. Rodger, “The relationship of visual threshold to retinal position and area,” J. Physiol. (London) 160, 364–373 (1962).
  71. P. E. Hallet, “Spatial summation,” Vision Res. 3, 9–24 (1963).
  72. E. Baumgardt, “Threshold quantal problems,” in Handbook of Sensory Physiology, D. Jameson and L. M. Hurvich, eds. (Springer-Verlag, Heidelberg, 1972), Vol. II/4, Visual Psychophysics, pp. 29–55.
  73. A. M. Scholtes and M. A. Bouman, “Psychophysical experiments on spatial summation at threshold level of the human peripheral retina,” Vision Res. 17, 867–873 (1977).
  74. L. T. Sharpe, P. Whittle, and K. Nordby, “Spatial integration and sensitivity changes in rod vision,” J. Physiol. (London) 461, 235–246 (1993).
  75. E. Baumgardt, “Visual spatial and temporal summation,” Nature 184, 1951–1952 (1959).
  76. B. M. Hillmann, “Relationship between stimulus size and threshold intensity in the fovea measured at four exposure times,” J. Opt. Soc. Am. 48, 422–428 (1958).
  77. B. Chen, D. I. A. MacLeod, and A. Stockman, “Improvement in human vision under bright light: grain or gain?” J. Physiol. (London) 394, 17–38 (1987).
  78. C. H. Graham and R. Margaria, “Area and the intensity-time relation in peripheral retina,” Am. J. Physiol. 113, 299–305 (1935).
  79. R. M. Herrick, “Foveal luminance discrimination as a function of the duration of the decrement or increment in luminance,” J. Comp. Physiol. Psychol. 49, 437–443 (1956).
  80. E. Baumgardt and B. M. Hillmann, “Duration and size as determinants of peripheral retinal response,” J. Opt. Soc. Am. A 51, 340–344 (1961).
  81. L. T. Sharpe, C. Fach, and K. Nordby, “Temporal summation in the achromat,” Vision Res. 28, 1263–1269 (1988).
  82. L. T. Sharpe, A. Stockman, C. C. Fach, and U. Markstahler, “Temporal and spatial summation in the human rod visual system,” J. Physiol. (London) 463, 325–348 (1993).
  83. C. Friedburg, L. T. Sharpe, and E. Zrenner, “Cone and rod temporal summation during dark adaptation,” Invest. Ophthalmol. Visual Sci. Suppl. 37, 728 (1996).
  84. J. Krauskopf and J. D. Mollon, “The dependence of the temporal integration properties of individual chromatic mechanisms in the human eye,” J. Physiol. (London) 219, 611–623 (1971).
  85. H. G. Sperling and C. L. Jolliffe, “Intensity-time relationship at threshold for spectral stimuli in human vision,” J. Opt. Soc. Am. 55, 191–199 (1965).
  86. T. Uetsuki and M. Ikeda, “Adaptation and critical duration for Stiles π-mechanisms,” J. Opt. Soc. Am. 61, 821–828 (1971).
  87. D. J. Heeger, “Model for the extraction of image flow,” J. Opt. Soc. Am. A 4, 1455–1471 (1987).
  88. B. B. Lee, J. Pokorny, V. C. Smith, P. R. Martin, and A. Valberg, “Luminance and chromatic modulation sensitivity of macaque ganglion cells and human observers,” J. Opt. Soc. Am. A 7, 2223–2236 (1990).
  89. T. Takeuchi and K. K. De Valois, “Motion-reversal reveals two motion mechanisms functioning in scotopic vision,” Vision Res. 37, 745–755 (1998).
  90. D. M. Turner, K. K. De Valois, and T. Takeuchi, “Speed perception under scotopic conditions,” Invest. Ophthalmol. Visual Sci. Suppl. 38, 378 (1997).
  91. J. Hotson, D. Braun, W. Herzberg, and D. Boman, “Transcranial magnetic stimulation of extrastriate cortex degrades human direction discrimination,” Vision Res. 34, 2115–2124 (1994).
  92. R. B. H. Tootell, J. D. Mendola, N. K. Hadjikhani, A. K. Liu, and A. M. Dale, “The representation of the ipsilateral visual field in human cerebral cortex,” Proc. Natl. Acad. Sci. USA 95, 818–824 (1998).
  93. T. Schenk and J. Zihl, “Visual motion perception after brain damage. I. Deficits in global motion perception,” Neuropsychologia 35, 1289–1297 (1997).
  94. E. D. Grossman and R. Blake, “Perception of coherent motion, biological motion and form-from-motion under dim-light conditions,” Vision Res. 39, 3721–3727 (1999).
  95. W. H. Warren and K. J. Kurtz, “The role of central and peripheral vision in perceiving the direction of self-motion,” Percept. Psychophys. 51, 443–454 (1992).
  96. R. J. Snowden, N. Stimpson, and R. A. Ruddle, “Speed perception fogs up as visibility drops,” Nature 392, 450 (1998).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited