OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Vol. 17, Iss. 9 — Sep. 1, 2000
  • pp: 1650–1658

Method for a quantitative investigation of the frozen flow hypothesis

Matthias Schöck and Earl J. Spillar  »View Author Affiliations

JOSA A, Vol. 17, Issue 9, pp. 1650-1658 (2000)

View Full Text Article

Acrobat PDF (180 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present a technique to test the frozen flow hypothesis quantitatively, using data from wave-front sensors such as those found in adaptive optics systems. Detailed treatments of the theoretical background of the method and of the error analysis are presented. Analyzing data from the 1.5-m and 3.5-m telescopes at the Starfire Optical Range, we find that the frozen flow hypothesis is an accurate description of the temporal development of atmospheric turbulence on time scales of the order of 1–10 ms but that significant deviations from the frozen flow behavior are present for longer time scales. © 2000 Optical Society of America [S0740–3232(00)00509–3]

© 2000 Optical Society of America

OCIS Codes
(010.1080) Atmospheric and oceanic optics : Active or adaptive optics
(010.1330) Atmospheric and oceanic optics : Atmospheric turbulence
(010.7350) Atmospheric and oceanic optics : Wave-front sensing
(280.7250) Remote sensing and sensors : Velocimetry

Matthias Schöck and Earl J. Spillar, "Method for a quantitative investigation of the frozen flow hypothesis," J. Opt. Soc. Am. A 17, 1650-1658 (2000)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. P. M. Harrington and B. M. Welsh, “Frequency-domain analysis of an adaptive optical system’s temporal response,” Opt. Eng. 33, 2336–2342 (1994).
  2. R. Dicke, “Phase-contrast detection of telescope seeing errors and their correction,” Astrophys. J. 198, 605–615 (1975).
  3. V. Zuev and V. Lukin, “Dynamic characteristics of optical adaptive systems,” Appl. Opt. 26, 139–144 (1987).
  4. M. Jorgensen, G. Aitken, and E. Hege, “Evidence of a chaotic attractor in star-wander data,” Opt. Lett. 16, 64–66 (1991).
  5. C. Schwartz, G. Baum, and E. N. Ribak, “Turbulence-degraded wave fronts as fractal surfaces,” J. Opt. Soc. Am. A 11, 444–451 (1994).
  6. M. B. Jorgensen and G. J. M. Aitken, “Wave front prediction for adaptive optics,” in International Commission for Optics and ESO Meeting on Adaptive Optics, F. Merkle, ed. (European Southern Observatory, Garching, Germany, 1993), pp. 143–148.
  7. M. Lloyd-Hart and P. McGuire, “Spatio-temporal predictions for adaptive optics wave-front reconstructors,” in Adaptive Optics, M. Cullum, ed., OSA Proceedings Series (Optical Society of America, Washington, D.C., 1995), pp. 95–101.
  8. J. Vernin and F. Roddier, “Experimental determination of two-dimensional spatiotemporal power spectra of stellar light scintillation. Evidence for a multilayer structure of the air turbulence in the upper troposphere,” J. Opt. Soc. Am. 63, 270–273 (1973).
  9. J. Caccia and J. Vernin, “Wind fluctuation measurements in the buoyancy range by stellar scintillation analysis,” J. Geophys. Res. 95, 12683–13690 (1990).
  10. A. Fuchs, M. Tallon, and J. Vernin, “Focusing on a turbulent layer: principle of the ‘generalized SCIDAR, ’ ” Proc. Astron. Soc. Pac. 110, 86–91 (1998).
  11. B. M. Welsh and S. C. Koeffler, “Remote sensing of atmospheric turbulence and transverse winds from wave-front slope measurements from crossed optical paths,” Appl. Opt. 33, 4880–4888 (1994).
  12. F. Martin, A. Tokovinin, A. Ziad, R. Conan, J. Borgnino, R. Avila, A. Agabi, and M. Sarazin, “First statistical data on wavefront outer scale at La Silla observatory from the GSM instrument,” Astron. Astrophys. 336, L49–L52 (1998).
  13. E. Gendron and P. Léna, “Single layer atmospheric turbulence demonstrated by adaptive optics observations,” Astrophys. Space Sci. 2, 221–228 (1996).
  14. M. Schöck and E. J. Spillar, “Measuring wind speeds and turbulence with a wave-front sensor,” Opt. Lett. 23, 150–152 (1998).
  15. M. Schöck and E. J. Spillar, “Analyzing atmospheric turbulence with a Shack–Hartmann wavefront sensor,” in Adaptive Optical System Technologies, D. Bonaccini and R. K. Tyson, eds., Proc. SPIE 3353, 1092–1099 (1998).
  16. M. Schöck and E. J. Spillar, “Turbulence analysis with the Starfire Optical Range 3.5-m telescope,” in Catching the Perfect Wave: Adaptive Optics and Interferometry in the 21st Century, S. R. Restaino, W. Junor, and N. Duric, eds., ASP Conf. Ser. 174 (Astronomical Society of the Pacific, San Francisco, Calif., 1999), pp. 119–123.
  17. M. Schöck, “An analysis of turbulent layers with a wave-front sensor,” Ph.D. dissertation (University of Wyoming, Laramie, Wyoming, 1998).
  18. F. Roddier, “The effects of atmospheric turbulence in optical astronomy,” in Progress in Optics, E. Wolf, ed. (North-Holland, Amsterdam, 1981), Vol. 19.
  19. T. L. Pennington, D. Swindle, M. Oliker, B. L. Ellerbroek, and J. M. Spinhirne, “Performance measurements of generation III wavefront sensors at the Starfire Optical Range,” in Adaptive Optical Systems and Applications, R. K. Tyson and R. Q. Fugate, eds., Proc. SPIE 2534, 327–337 (1995).
  20. M. C. Roggemann and B. Welsh, Imaging through Turbulence (CRC Press, Boca Raton, Fla., 1996).
  21. R. Q. Fugate, “Observations of faint objects with laser beacon adaptive optics,” in Adaptive Optics in Astronomy, M. A. Ealey and F. Merkle, eds., Proc. SPIE 2201, 10–21 (1994).
  22. J. M. Spinhirne, J. G. Allen, G. A. Ameer, J. M. Brown II, J. C. Christou, T. S. Duncan, R. J. Eager, M. A. Ealey, B. L. Ellerbroek, R. Q. Fugate, G. W. Jones, R. M. Kuhns, D. J. Lee, W. H. Lowrey, M. D. Oliker, R. E. Ruane, D. W. Swindle, J. K. Voas, W. J. Wild, K. B. Wilson, and J. L. Wynia, “The Starfire Optical Range 3.5-m telescope adaptive optics system,” in Adaptive Optical System Technologies, D. Bonaccini and R. K. Tyson, eds., Proc. SPIE 3353, 22–33 (1998).
  23. J.-M. Conan, G. Rousset, and P.-Y. Madec, “Wave-front temporal spectra in high-resolution imaging through turbulence,” J. Opt. Soc. Am. A 12, 1559–1570 (1995).
  24. D. McGaughey and G. Aitken, “Temporal analysis of stellar wave-front tilt data,” J. Opt. Soc. Am. A 14, 1967–1974 (1997).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited