OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Vol. 18, Iss. 10 — Oct. 1, 2001
  • pp: 2527–2538

Optimal wave-front reconstruction strategies for multiconjugate adaptive optics

Thierry Fusco, Jean-Marc Conan, Gérard Rousset, Laurent Marc Mugnier, and Vincent Michau  »View Author Affiliations


JOSA A, Vol. 18, Issue 10, pp. 2527-2538 (2001)
http://dx.doi.org/10.1364/JOSAA.18.002527


View Full Text Article

Acrobat PDF (568 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We propose an optimal approach for the phase reconstruction in a large field of view (FOV) for multiconjugate adaptive optics. This optimal approach is based on a minimum-mean-square-error estimator that minimizes the mean residual phase variance in the FOV of interest. It accounts for the Cn2 profile in order to optimally estimate the correction wave front to be applied to each deformable mirror (DM). This optimal approach also accounts for the fact that the number of DMs will always be smaller than the number of turbulent layers, since the Cn2 profile is a continuous function of the altitude h. Links between this optimal approach and a tomographic reconstruction of the turbulence volume are established. In particular, it is shown that the optimal approach consists of a full tomographic reconstruction of the turbulence volume followed by a projection onto the DMs accounting for the considered FOV of interest. The case where the turbulent layers are assumed to match the mirror positions [model-approximation (MA) approach], which might be a crude approximation, is also considered for comparison. This MA approach will rely on the notion of equivalent turbulent layers. A comparison between the optimal and MA approaches is proposed. It is shown that the optimal approach provides very good performance even with a small number of DMs (typically, one or two). For instance, good Strehl ratios (greater than 20%) are obtained for a 4-m telescope on a 150-arc sec × 150-arc sec FOV by using only three guide stars and two DMs.

© 2001 Optical Society of America

OCIS Codes
(010.1080) Atmospheric and oceanic optics : Active or adaptive optics
(010.1330) Atmospheric and oceanic optics : Atmospheric turbulence
(010.7350) Atmospheric and oceanic optics : Wave-front sensing

Citation
Thierry Fusco, Jean-Marc Conan, Gérard Rousset, Laurent Marc Mugnier, and Vincent Michau, "Optimal wave-front reconstruction strategies for multiconjugate adaptive optics," J. Opt. Soc. Am. A 18, 2527-2538 (2001)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-18-10-2527


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. J. W. Hardy, J. E. Lefevbre, and C. L. Koliopoulos, “Real time atmospheric compensation,” J. Opt. Soc. Am. 67, 360–369 (1977).
  2. G. Rousset, J.-C. Fontanella, P. Kern, P. Gigan, F. Rigaut, P. Léna, C. Boyer, P. Jagourel, J.-P. Gaffard, and F. Merkle, “First diffraction-limited astronomical images with adaptive optics,” Astron. Astrophys. 230, 29–32 (1990).
  3. F. Roddier, ed., Adaptive Optics in Astronomy (Cambridge U. Press, Cambridge, UK, 1999).
  4. D. L. Fried, “Anisoplanatism in adaptive optics,” J. Opt. Soc. Am. 72, 52–61 (1982).
  5. F. Chassat, “Calcul du domaine d’isoplanétisme d’un système d’optique adaptative fonctionnant à travers la turbulence atmosphérique,” J. Opt. (Paris) 20, 13–23 (1989).
  6. T. Fusco, J.-M. Conan, L. Mugnier, V. Michau, and G. Rousset, “Characterisation of adaptive optics point spread function for anisoplanatic imaging. Application to stellar field deconvolution,” Astron. Astrophys. Suppl. Ser. 142, 149–156 (2000).
  7. R. H. Dicke, “Phase-contrast detection of telescope seeing and their correction,” Astron. J. 198, 605–615 (1975).
  8. J. M. Beckers, “Increasing the size of the isoplanatic patch with multiconjugate adaptive optics,” in Very Large Telescopes and Their Instrumentation, M. H. Ulrich, ed. (European Southern Observatory, Garching, Germany, 1988), pp. 693–703.
  9. R. Ragazzoni, “No laser guide stars for adaptive optics in giant telescopes?” Astron. Astrophys. Suppl. Ser. 136, 205–209 (1999).
  10. T. Fusco, J.-M. Conan, V. Michau, L. Mugnier, and G. Rous-set, “Efficient phase estimation for large field of view adaptive optics,” Opt. Lett. 24, 1472–1474 (1999).
  11. T. Fusco, J.-M. Conan, V. Michau, L. M. Mugnier, and G. Rousset, “Phase estimation for large field of view: application to multiconjugate adaptive optics,” in Propagation through the Atmosphere III, M. C. Roggemann and L. R. Bissonnette, eds., Proc. SPIE 3763, 125–133 (1999).
  12. T. Fusco, J.-M. Conan, V. Michau, G. Rousset, and L. Mugnier, “Isoplanatic angle and optimal guide star separation for multiconjugate adaptive optics,” in Adaptive Optical Systems Technology, P. Wizinowich, ed., Proc. SPIE 4007, 1044–1055 (2000).
  13. A. Tokovinin, M. Le Louarn, and M. Sarazin, “Isoplanatism in multiconjugate adaptive optics system,” J. Opt. Soc. Am. A 17, 1819–1827 (2000).
  14. M. Le Louarn, N. Hubin, M. Sarazin, and A. Tokovinin, “New challenges for adaptive optics: extremely large telescopes,” Mon. Not. R. Astron. Soc. 317, 535–544 (2000).
  15. B. L. Ellerbroek, “First-order performance evaluation of adaptive-optics systems for atmospheric-turbulence compensation in extended-field-of-view astronomical telescopes,” J. Opt. Soc. Am. A 11, 783–805 (1994).
  16. M. Tallon, R. Foy, and J. Vernin, “3-D wavefront sensing for multiconjugate adaptive optics,” in Progress in Telescope and Instrumentation Technologies, M.-H. Ulrich, ed. (European Southern Observatory, Garching, Germany, 1992), pp. 517–521.
  17. D. C. Johnston and B. M. Welsh, “Analysis of multiconjugate adaptive optics,” J. Opt. Soc. Am. A 11, 394–408 (1994).
  18. R. Flicker, F. Rigaut, and B. Ellerbroek, “Comparison of multiconjugate adaptive optics configurations and control algorithms for the Gemini-South 8-m telescope,” in Adaptive Optical Systems Technology, P. Wizinovich, ed., Proc. SPIE 4007, 1032–1043 (2000).
  19. M. Tallon and R. Foy, “Adaptive telescope with laser probe: isoplanatism and cone effect,” Astron. Astrophys. 235, 549–557 (1990).
  20. R. Ragazzoni, E. Marchetti, and F. Rigaut, “Modal tomography for adaptive optics,” Astron. Astrophys. 342, L53–L56 (1999).
  21. F. Roddier, “The effects of atmospherical turbulence in optical astronomy,” in Progress in Optics, E. Wolf, ed. (North-Holland, Amsterdam, 1981), Vol. XIX, pp. 281–376.
  22. G. Rousset, “Wavefront sensing,” in Adaptive Optics for Astronomy, D. Alloin and J.-M. Mariotti, eds. (Kluwer Academic, Cargèse, France, 1993), pp. 115–137.
  23. H. L. Van Trees, Detection, Estimation, and Modulation Theory (Wiley, New York, 1968).
  24. T. Fusco, J.-M. Conan, V. Michau, G. Rousset, and F. Assémat, “Multiconjugate adaptive optics:  comparison of phase reconstruction approaches for large field of view”, in Atmospheric Propagation, Adaptive Systems, and Laser Radar Technology for Remote Sensing, J. D. Gonglewski, G. W. Kadmerman, and A. Kohnle, eds., Proc. SPIE 4167, 168–179 (2000).
  25. E. P. Wallner, “Optimal wave-front correction using slope measurements,” J. Opt. Soc. Am. 73, 1771–1776 (1983).
  26. A. Fuchs, M. Tallon, and J. Vernin, “Focusing on a turbulent layer: principle of the ‘generalized SCIDAR’,” Publ. Astron. Soc. Pac. 110, 86–91 (1998).
  27. R. J. Noll, “Zernike polynomials and atmospheric turbulence,” J. Opt. Soc. Am. 66, 207–211 (1976).
  28. F. Rigaut and E. Gendron, “Laser guide star in adaptative optics: the tilt determination problem,” Astron. Astrophys. 261, 677–684 (1992).
  29. B. McGlamery, “Computer simulation studies of compensation of turbulence degraded images,” in Image Processing, J. C. Ulrich, ed., Proc. SPIE 74, 225–233 (1976).
  30. G. Herriot, S. Morris, S. Roberts, M. Fletcher, L. Saddlemyer, J.-P. Singh, G. Véran, and E. Richardson, “Innovations in the Gemini adaptive optics system design,” in Adaptive Optical System Technologies, D. Bonaccini and R. K. Tyson, eds., Proc. SPIE 3353, 488–499 (1998).
  31. J.-M. Conan, L. M. Mugnier, T. Fusco, V. Michau, and G. Rousset, “Myopic deconvolution of adaptive optics images using object and point spread function power spectra,” Appl. Opt. 37, 4614–4622 (1998).
  32. L. M. Mugnier, C. Robert, J.-M. Conan, V. Michau, and S. Salem, “Regularized multiframe myopic deconvolution from wavefront sensing,” in Propagation through the Atmosphere III, M. C. Roggemann and L. R. Bissonnette, eds., Proc. SPIE 3763, 134–144 (1999).
  33. W. J. Vetter, “Derivative operations on matrices,” IEEE Trans. Autom. Control AC-15, 241–244 (1970).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited