OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Vol. 18, Iss. 10 — Oct. 1, 2001
  • pp: 2548–2556

Theoretical, experimental, and computational aspects of optical property determination of turbid media by using frequency-domain laser infrared photothermal radiometry

Lena Nicolaides, Yan Chen, Andreas Mandelis, and I. Alex Vitkin  »View Author Affiliations


JOSA A, Vol. 18, Issue 10, pp. 2548-2556 (2001)
http://dx.doi.org/10.1364/JOSAA.18.002548


View Full Text Article

Acrobat PDF (538 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In this work, the optical and thermal properties of tissuelike materials are measured by using frequency-domain infrared photothermal radiometry. This technique is better suited for quantitative multiparameter optical measurements than the widely used pulsed-laser photothermal radiometry (PPTR) because of the availability of two independent signal channels, amplitude and phase, and the superior signal-to-noise ratio provided by synchronous lock-in detection. A rigorous three-dimensional (3-D) thermal-wave formulation with a 3-D diffuse and coherent photon-density-wave source is applied to data from model phantoms. The combined theoretical, experimental, and computational methodology shows good promise with regard to its analytical ability to measure optical properties of turbid media uniquely, as compared with PPTR, which exhibits uniqueness problems. From data sets obtained by using calibrated test phantoms, the reduced optical scattering and absorption coefficients were found to be within 20% and 10%, respectively, of the values independently derived by using Mie theory and spectrophotometric measurements.

© 2001 Optical Society of America

OCIS Codes
(170.4580) Medical optics and biotechnology : Optical diagnostics for medicine
(260.3060) Physical optics : Infrared

Citation
Lena Nicolaides, Yan Chen, Andreas Mandelis, and I. Alex Vitkin, "Theoretical, experimental, and computational aspects of optical property determination of turbid media by using frequency-domain laser infrared photothermal radiometry," J. Opt. Soc. Am. A 18, 2548-2556 (2001)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-18-10-2548


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. M. Munidasa, T. C. Ma, A. Mandelis, S. K. Brown, and L. Mannik, “Non-destructive depth profiling of laser processed Zr-2.5Nb alloy by infrared photothermal radiometry,” J. Mater. Sci. Eng. A 159, 111–118 (1992).
  2. G. Busse and H. G. Walther, “Photothermal nondestructive evaluation of materials with thermal waves,” in Progress in Photothermal and Photoacoustic Science and Technology, A. Mandelis, ed. (Elsevier, New York, 1992), Vol. 1, pp. 205–298.
  3. R. R. Anderson, H. Beck, U. Bruggemann, W. Farinelli, S. L. Jacques, and J. A. Parrish, “Pulsed photothermal radiometry in turbid media: internal reflection of backscattered radiation strongly influences optical dosimetry,” Appl. Opt. 28, 2256–2262 (1989).
  4. I. A. Vitkin, B. C. Wilson, and R. R. Anderson, “Pulsed photothermal radiometry applications in biological media,” in Optical-Thermal Response of Laser-Irradiated Tissue, A. J. Welch and M. J. C. van Gemert, eds. (Plenum, New York, 1995), Chap. 16.
  5. S. A. Prahl, I. A. Vitkin, U. Bruggemann, B. C. Wilson, and R. R. Anderson, “Determination of optical properties of turbid media using pulsed photothermal radiometry,” Phys. Med. Biol. 37, 1203–1217 (1992).
  6. F. H. Long, R. R. Anderson, and T. F. Deutsch, “Pulsed photothermal radiometry for depth profiling of layered media,” Appl. Phys. Lett. 51, 2076–2078 (1987).
  7. A. Ishimaru, Y. Kuga, R. L-T. Cheung, and K. Shimizu, “Scattering and diffusion of a beam wave in randomly distributed scatterers,” J. Opt. Soc. Am. 73, 131–136 (1983).
  8. A. Mandelis, “Diffusion waves and their uses,” Phys. Today 53, 29–34 (2000).
  9. E. Amic, J. M. Luck, and Th. M. Nieuwenhuizen, “Multiple Rayleigh scattering of electromagnetic waves,” J. Phys. (Paris) I 7, 445–483 (1997).
  10. A. Mandelis, Diffusion-Wave Fields: Mathematical Methods and Green Functions (Springer-Verlag, New York, 2001), Chap. 10.
  11. Th. M. Nieuwenhuizen and J. M. Luck, “Skin layer of diffusive media,” Phys. Rev. E 48, 569–588 (1993).
  12. M. C. W. van Rossum and Th. M. Nieuwenhuizen, “Multiple scattering of classical waves: microscopy, mesoscopy and diffusion,” Rev. Mod. Phys. 71, 313–370 (1999).
  13. A. Ishimaru, Wave Propagation and Scattering in Random Media (Academic, New York, 1978), Chap. 9.
  14. Ref. 3, p. 2261, Eq. (8).
  15. R. A. J. Groenhuis, H. A. Ferwerda, and J. J. Ten Bosch, “Scattering and absorption of turbid materials determined from reflection measurements. 1: Theory,” Appl. Opt. 22, 2456–2462 (1983).
  16. T. J. Farrell, M. S. Patterson, and B. Wilson, “A diffusion theory model of spatially resolved, steady-state diffuse reflectance for the noninvasive determination of tissue optical properties in vivo,” Med. Phys. 19, 879–888 (1992).
  17. A. Mandelis and C. Feng, “Theory of frequency-domain infrared radiometric detection of diffuse-photon-density- and photothermal waves in turbid media” (manuscript available from A. Mandelis, mandelis@mie.utoronto.ca).
  18. B. Majaron, W. Verkruysse, B. S. Tanenbaum, T. E. Milner, and J. S. Nelson, “Pulsed photothermal profiling of hypervascular lesions: some recent advances,” in Lasers in Surgery: Advanced Characterization, Therapeutics and Systems X, R. R. Anderson, K. E. Bartels, L. S. Bass, C. G. Garrett, K. W. Gregory, N. Kollias, H. Lui, R. S. Malek, G. M. Peavy, H.-D. Reidenbach, L. Reinisch, D. S. Robinson, L. P. Tate, Jr., E. A. Towers, and T. A. Woodward, eds., Proc. SPIE 3907, 114–125 (2000).
  19. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983), Appendix A.
  20. W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes in C, 2nd ed. (Cambridge U. Press, New York, 1992).
  21. W. M. Star and J. P. A. Marijnissen, “New trends in photobiology light dosimetry: status and prospects,” J. Photochem. Photobiol. B 1, 149–159 (1987).
  22. A. Mandelis, “Signal-to-noise ratios in lock-in amplifier synchronous detection: a generalized communications systems approach with applications to frequency-, time- and hybrid (rate-window) photothermal measurements,” Rev. Sci. Instrum. 65, 3309–3323 (1994).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited