OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Vol. 18, Iss. 2 — Feb. 1, 2001
  • pp: 435–441

Photonic bandgap structures in planar waveguides

Jiří Čtyroký  »View Author Affiliations


JOSA A, Vol. 18, Issue 2, pp. 435-441 (2001)
http://dx.doi.org/10.1364/JOSAA.18.000435


View Full Text Article

Enhanced HTML    Acrobat PDF (311 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

If a one-dimensional (1D) or two-dimensional (2D) photonic bandgap (PBG) structure is incorporated into a planar optical waveguide, the refractive-index nonuniformity in the direction perpendicular to the waveguide plane responsible for waveguiding may affect its behavior detrimentally. Such influence is demonstrated in the paper by numerical modeling of a deeply etched first-order waveguide Bragg grating. On the basis of physical considerations, a simple condition for the design of 1D and 2D waveguide PBG structures free of this degradation is formulated; it is, in fact the separability condition for the wave equation. Its positive effect is verified by numerical modeling of a modified waveguide Bragg grating that fulfills the separability condition.

© 2001 Optical Society of America

OCIS Codes
(050.2770) Diffraction and gratings : Gratings
(130.0130) Integrated optics : Integrated optics
(130.2790) Integrated optics : Guided waves
(230.1480) Optical devices : Bragg reflectors

History
Original Manuscript: August 31, 1999
Revised Manuscript: August 1, 2000
Manuscript Accepted: August 1, 2000
Published: February 1, 2001

Citation
Jiří Čtyroký, "Photonic bandgap structures in planar waveguides," J. Opt. Soc. Am. A 18, 435-441 (2001)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-18-2-435


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987). [CrossRef] [PubMed]
  2. D. Cheng, R. Biswas, E. Ozbay, S. McCalmont, G. Tuttle, K.-M. Ho, “Optimized dipole antennas on photonic band gap crystals,” Appl. Phys. Lett. 67, 3399–3401 (1995). [CrossRef]
  3. J. C. Knight, T. A. Birks, P. St. J. Russel, D. M. Atkin, “All-silica single-mode optical fiber with photonic crystal cladding,” Opt. Lett. 21, 1547–1549 (1996). [CrossRef] [PubMed]
  4. J. C. Knight, T. A. Birks, P. St. J. Russel, D. M. Atkin, “All-silica single-mode optical fiber with photonic crystal cladding: errata,” Opt. Lett. 22, 484–485 (1997). [CrossRef] [PubMed]
  5. T. A. Birks, J. C. Knight, J. St. J. Russell, “Endlessly single-mode photonic crystal fiber,” Opt. Lett. 22, 961–963 (1997). [CrossRef] [PubMed]
  6. H. Benisty, “Photonic bandgap structures in waveguides,” presented at the 9th European Conference on Integrated Optics, Turin, Italy, April 13–16, 1999.
  7. The details can be found at URL http://www.ele.kth.se.COST268/ .
  8. D. Marcuse, Theory of Dielectric Optical Waveguides, 2nd ed. (Academic, San Diego, Calif., 1991).
  9. S. G. Johnson, S. Fan, P. R. Villeneuve, J. D. Joannopoulos, L. A. Kolodziejski, “Guided modes in photonic crystal slabs,” Phys. Rev. B 60, 5751–5758 (1999). [CrossRef]
  10. G. Sztefka, H.-P. Nolting, “Bidirectional eigenmode propagation for large refractive index steps,” IEEE Photonics Technol. Lett. 5, 554–557 (1993). [CrossRef]
  11. G. Guekos, ed., Photonic Devices for Telecommunications, How to Model and Measure (Springer-Verlag, Berlin, 1998), pp. 50–56.
  12. J-P. Bérenger, “A perfectly matched layer for the absorption of electromagnetic waves,” J. Comput. Phys. 114, 185–200 (1994). [CrossRef]
  13. W. C. Chew, J. M. Jin, E. Michelsen, “Complex coordinate stretching as a generalized absorbing boundary condition,” Microwave Opt. Technol. Lett. 16, 363–369 (1999).
  14. J. Čtyroký, S. Helfert, R. Pregla, “Analysis of a deep waveguide Bragg grating,” Opt. Quantum Electron. 30, 343–358 (1998). [CrossRef]
  15. T. Itoh, ed., Numerical Techniques for Microwave and Millimeter Wave Passive Structures (Wiley, New York, 1989).
  16. J. Čtyroký, J. Homola, M. Skalský, “Modelling of surface plasmon resonance waveguide sensor by complex mode expansion and propagation method,” Opt. Quantum Electron. 29, 301–311 (1997). [CrossRef]
  17. A. S. Sudbø, “Improved formulation of the film mode matching method for mode field calculations in dielectric waveguides,” Pure Appl. Opt. 3, 381–388 (1994). [CrossRef]
  18. J. Chilwell, I. Hodgkinson, “Thin-films field-transfer matrix theory of planar multilayer waveguides and reflection prism-loaded waveguides,” J. Opt. Soc. Am. A 1, 742–753 (1984). [CrossRef]
  19. P. Yeh, Optical Waves in Layered Media (Wiley, New York, 1988).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited