OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Vol. 18, Iss. 5 — May. 1, 2001
  • pp: 1160–1170

Resonant scattering and mode coupling in two-dimensional textured planar waveguides

Allan R. Cowan, Paul Paddon, Vighen Pacradouni, and Jeff F. Young  »View Author Affiliations


JOSA A, Vol. 18, Issue 5, pp. 1160-1170 (2001)
http://dx.doi.org/10.1364/JOSAA.18.001160


View Full Text Article

Enhanced HTML    Acrobat PDF (282 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A heuristic formalism is developed for efficiently determining the specular reflectivity spectrum of two-dimensionally textured planar waveguides. The formalism is based on a Green’s function approach wherein the electric fields are assumed to vary little over the thickness of the textured part of the waveguide. Its accuracy, when the thickness of the textured region is much smaller than the wavelength of relevant radiation, is verified by comparison with a much less efficient, exact finite difference solution of Maxwell’s equations. In addition to its numerical efficiency, the formalism provides an intuitive explanation of Fano-like features evident in the specular reflectivity spectrum when the incident radiation is phase matched to excite leaky electromagnetic modes attached to the waveguide. By associating various Fourier components of the scattered field with bare slab modes, the dispersion, unique polarization properties, and lifetimes of these Fano-like features are explained in terms of photonic eigenmodes that reveal the renormalization of the slab modes due to interaction with the two-dimensional grating. An application of the formalism, in the analysis of polarization-insensitive notch filters, is also discussed.

© 2001 Optical Society of America

OCIS Codes
(230.7390) Optical devices : Waveguides, planar
(260.2110) Physical optics : Electromagnetic optics
(310.2790) Thin films : Guided waves
(350.2770) Other areas of optics : Gratings

History
Original Manuscript: February 24, 2000
Revised Manuscript: November 6, 2000
Manuscript Accepted: November 6, 2000
Published: May 1, 2001

Citation
Allan R. Cowan, Paul Paddon, Vighen Pacradouni, and Jeff F. Young, "Resonant scattering and mode coupling in two-dimensional textured planar waveguides," J. Opt. Soc. Am. A 18, 1160-1170 (2001)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-18-5-1160


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486–2489 (1987). [CrossRef] [PubMed]
  2. E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987). [CrossRef] [PubMed]
  3. J. D. Joannopoulos, P. R. Villeniuve, S. Fan, “Photonic crystals: putting a new twist on light,” Nature 386, 143–149 (1997). [CrossRef]
  4. K. Agi, E. R. Brown, O. B. McMahon, C. Dill, K. J. Malloy, “Design of ultrawideband photonic broadband antenna applications,” Electron. Lett. 30, 2166–2167 (1994). [CrossRef]
  5. E. Yablonovitch, T. J. Gmitter, R. D. Meade, A. M. Rappe, K. D. Brommer, J. D. Joannopoulos, “Donor and acceptor modes in photonic band structure,” Phys. Rev. Lett. 67, 3380–3383 (1991). [CrossRef] [PubMed]
  6. O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, I. Kim, “Two-dimensional photonic band-gap defect mode laser,” Science 284, 1819–1821 (1999). [CrossRef] [PubMed]
  7. M. Kanskar, P. Paddon, V. Pacradouni, R. Morin, A. Busch, J. F. Young, S. R. Johnson, J. Mackenzie, T. Tiedje, “Observation of leaky slab modes in air–bridge semiconductor waveguides with a two-dimensional photonic lattice,” Appl. Phys. Lett. 70, 1438–1440 (1997). [CrossRef]
  8. V. N. Astratov, D. M. Whittaker, I. S. Calshaw, R. M. Stevenson, M. S. Skolnick, T. F. Krauss, R. M. De La Rue, “Photonic band-structure effects in the reflectivity of periodically patterned waveguides,” Phys. Rev. B 60, R16255–R16258 (1999). [CrossRef]
  9. V. N. Astratov, I. S. Calshaw, R. M. Stevenson, D. M. Whittaker, M. S. Skolnick, T. F. Krauss, R. M. De La Rue, “Resonant coupling of near-infrared radiation to photonic band structure waveguides,” J. Lightwave Technol. 17, 2050–2056 (1999). [CrossRef]
  10. V. Pacradouni, J. Mandeville, A. R. Cowan, P. Paddon, J. F. Young, “Photonic bandstructure of dielectric membranes periodically textured in two dimensions,” Phys. Rev. B 62, 4204–4207 (2000). [CrossRef]
  11. S. M. Norton, T. Erdogan, G. Michael Morris, “Coupled-mode theory of resonant-grating filters,” J. Opt. Soc. Am. A 14, 629–639 (1997). [CrossRef]
  12. S. Tibuleac, R. Magnusson, “Reflection and transmission guided-mode resonance filters,” J. Opt. Soc. Am. A 14, 1617–1626 (1997). [CrossRef]
  13. T. Tamir, S. Zhang, “Resonant scattering by multilayered dielectric gratings,” J. Opt. Soc. Am. A 14, 1607–1616 (1997). [CrossRef]
  14. J. F. Young, P. Paddon, V. Pacradouni, T. Tiedje, S. Johnson, “Photonic lattices in semiconductor waveguides,” in Future Trends in Microelectronics, S. Luryi, J. Xu, A. Zaslavsky, eds. (Wiley, Toronto, 1999), pp. 423–432.
  15. D. M. Whittaker, I. S. Culshaw, “Scattering-matrix treatment of patterned multilayer photonic structures,” Phys. Rev. B 60, 2610–2618 (1999). [CrossRef]
  16. S. Peng, G. M. Morris, “Resonant Scattering from two-dimensional gratings,” J. Opt. Soc. Am. A 13, 993–1005 (1996). [CrossRef]
  17. D. M. Atkin, P. St. J. Russell, T. A. Birks, P. J. Roberts, “Photonic band structure of guided Bloch modes in high index films fully etched through with periodic microstructure,” J. Mod. Opt. 43, 1035–1053 (1996). [CrossRef]
  18. P. Paddon, J. F. Young, “Simple approach to coupling in textured planar waveguides,” Opt. Lett. 23, 1529–1531 (1998). [CrossRef]
  19. P. Paddon, J. F. Young, “Two-dimensional vector-coupled-mode theory for textured planar waveguides,” Phys. Rev. B 61, 2090–2101 (2000). [CrossRef]
  20. A. Yariv, “Coupled-mode theory for guided wave optics,” IEEE J. Quantum Electron. QE-9, 919–933 (1973). [CrossRef]
  21. W. Streifer, D. R. Scifres, R. D. Burnham, “Coupled wave analysis of DFB and DBR lasers,” IEEE J. Quantum Electron. QE-13, 134–141 (1977). [CrossRef]
  22. L. A. Weller-Brophy, D. G. Hall, “Local normal mode analysis of guided mode interactions with waveguide gratings,” J. Lightwave Technol. 6, 1069–1082 (1988). [CrossRef]
  23. J. E. Sipe, “New Green-function formalism for surface optics,” J. Opt. Soc. Am. B 4, 481–489 (1987). [CrossRef]
  24. S. Peng, G. M. Morris, “Experimental investigation of resonant grating filters based on two-dimensional gratings,” in Diffractive and Holographic Optics Technology III, I. Cindrich, S. H. Lee, eds, Proc. SPIE2689, 90–94 (1996). [CrossRef]
  25. V. Pacradouni, A. R. Cowan, J. Mandeville, P. Paddon, J. F. Young, “Dispersion and lifetimes of leaky modes attached to 2D waveguide-based photonic crystals: experiment and theory,” post deadline conference proceedings, 1999 OSA Annual Meeting, Santa Clara, California, September 26–30, 1999.
  26. A. R. Cowan, “Periodically textured planar waveguides,” M. S. thesis (University of British Columbia, Vancouver, B.C., Canada, 2000), p. 32–36.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited