## Rigorous electromagnetic analysis of a microcylindrical axilens with long focal depth and high transverse resolution

JOSA A, Vol. 18, Issue 7, pp. 1465-1470 (2001)

http://dx.doi.org/10.1364/JOSAA.18.001465

Acrobat PDF (395 KB)

### Abstract

We first present nonparaxial designs for a microcylindrical axilens with different long focal depths and rigorously analyze electromagnetic field distributions of the axilens using integral equations and the boundary-element method. Numerical results show that the designed axilenses indeed have the special feature of attaining a long focal depth while keeping high transverse resolution for numerical apertures of 2.4, 2.0, and 1.0. The ratio between the extended focal depth of the designed axilens and the focal depth of the conventional focal lens is 1.41, the corresponding maximal extended focal depth of the axilens can reach 28 μm, and the spot size of the focal beam is ~10 μm over the focal range.

© 2001 Optical Society of America

**OCIS Codes**

(050.0050) Diffraction and gratings : Diffraction and gratings

(050.1970) Diffraction and gratings : Diffractive optics

(220.3620) Optical design and fabrication : Lens system design

**Citation**

Bi-Zhen Dong, Juan Liu, Ben-Yuan Gu, Guo-Zhen Yang, and Jian Wang, "Rigorous electromagnetic analysis of a microcylindrical axilens with long focal depth and high transverse resolution," J. Opt. Soc. Am. A **18**, 1465-1470 (2001)

http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-18-7-1465

Sort: Year | Journal | Reset

### References

- N. Davidson, A. A. Friesem, and E. Hasman, “Holographic axilens: high resolution and long focal depth,” Opt. Lett. 16, 523–525 (1991).
- J. Sochacki, S. Bará, Z. Jaroszewicz, and A. Kołodziejczyk, “Phase retardation of the uniform-intensity axilens,” Opt. Lett. 17, 7–9 (1992).
- J. Sochacki, A. Kołodziejczyk, Z. Jaroszewicz, and S. Bará, “Nonparaxial design of generalized axicons,” Appl. Opt. 31, 5326–5330 (1992).
- L. F. Staroński, J. Sochacki, Z. Jaroszewicz, and A. Kołodziejczyk, “Lateral distribution and flow of energy in uniform-intensity axicons,” J. Opt. Soc. Am. A 9, 2091–2094 (1992).
- J. Sochacki, Z. Jaroszewicz, L. R. Staroński, and A. Kołodziejczyk, “Annular-aperture logarithmic axicon,” J. Opt. Soc. Am. A 10, 1765–1768 (1993).
- Z. Jaroszewicz, J. Sochacki, A. Kołodziejczyk, and L. R. Staroński, “Apodized annular-aperture logarithmic axicon: smoothness and uniformity of intensity distributions,” Opt. Lett. 18, 1893–1895 (1993).
- B.-Z. Dong, G.-Z. Yang, and B.-Y. Gu, “Iterative optimization approach for designing an axicon with long focal depth and high transverse resolution,” J. Opt. Soc. Am. A 13, 97–103 (1996).
- R. Kant, “Superresolution and increase depth of focus: an inverse problem of vector diffraction,” J. Mod. Opt. 47, 905–916 (2000).
- K. Yashiro and S. Ohkawa, “Boundary element method for electromagnetic field problems,” IEEE Trans. Antennas Propag. AP-33, 383–389 (1985).
- K. Hirayama, E. N. Glytsis, T. K. Gaylord, and D. W. Wilson, “Rigorous electromagnetic analysis of diffractive cylindrical lenses,” J. Opt. Soc. Am. A 13, 2219–2231 (1996).
- J. M. Bendickson, E. N. Glytsis, and T. K. Gaylord, “Scalar integral diffraction methods: unification, accuracy, and comparison with a rigorous boundary-element method with application to diffractive cylindrical lenses,” J. Opt. Soc. Am. A 15, 1822–1837 (1998).
- K. Hirayama, K. Igarashi, Y. Hayashi, E. N. Glytsis, and T. K. Gaylord, “Finite-substrate-thickness cylindrical diffractive lenses: exact and approximate boundary-element methods,” J. Opt. Soc. Am. A 16, 1294–1302 (1999).
- E. N. Glytsis, M. E. Harrigan, T. K. Gaylord, and K. Hirayama, “Effects of fabrication errors on the performance of cylindrical diffractive lenses: rigorous boundary-element method and scalar approximation,” Appl. Opt. 37, 6591–6602 (1998).
- E. N. Glytsis, M. E. Harrigan, K. Hirayama, and T. K. Gaylord, “Collimating cylindrical diffractive lenses: rigorous electromagnetic analysis and scalar approximation,” Appl. Opt. 37, 34–43 (1998).
- M. Koshiba, Optical Waveguide Theory by the Finite Element Method (KTK Scientific, Tokyo, 1992), pp.43–47.
- R. Petit, ed., Electromagnetic Theory of Gratings (Springer-Verlag, Berlin, 1980), Chap. 6.
- S. Kagami and I. Fukai, “Application of boundary-element method to electro-magnetic field problems,” IEEE Trans. Microwave Theory Tech. MTT-32, 455–461 (1984).
- D. A. Buralli, G. M. Morris, and J. R. Rogers, “Optical performance of holographic kinoforms,” Appl. Opt. 28, 976–983 (1989).

## Cited By |
Alert me when this paper is cited |

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article | Next Article »

OSA is a member of CrossRef.