OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Vol. 18, Iss. 7 — Jul. 1, 2001
  • pp: 1552–1561

Propagation and diffraction of locally excited surface plasmons

Fadi Issam Baida, Daniel Van Labeke, Alexandre Bouhelier, Thomas Huser, and Dieter Wolfgang Pohl  »View Author Affiliations

JOSA A, Vol. 18, Issue 7, pp. 1552-1561 (2001)

View Full Text Article

Acrobat PDF (966 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



With the use of optical near-field techniques, it is now possible to excite or observe surface plasmons with high lateral resolution. A theoretical study is presented of surface plasmon excitation by near-field optical probes and the influence of well-defined structures on surface plasmon propagation and surface plasmon detection in the far field. The generation and the diffraction of the surface plasmon is calculated by using a theoretical scheme founded upon a first-order perturbation expansion of the Rayleigh–Fano method. A very good agreement is obtained between numerical and experimental results. The theoretical tools used should prove a useful guideline for future experiments of nanooptics with surface plasmons.

© 2001 Optical Society of America

OCIS Codes
(110.1220) Imaging systems : Apertures
(180.5810) Microscopy : Scanning microscopy
(240.6680) Optics at surfaces : Surface plasmons
(260.3160) Physical optics : Interference

Fadi Issam Baida, Daniel Van Labeke, Alexandre Bouhelier, Thomas Huser, and Dieter Wolfgang Pohl, "Propagation and diffraction of locally excited surface plasmons," J. Opt. Soc. Am. A 18, 1552-1561 (2001)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings, (Springer, Berlin, 1988), Vol. 111.
  2. M. Specht, J. D. Pedarnig, W. M. Heckl, and T. W. Hänsch, “Scanning plasmon near-field microscopy,” Phys. Rev. Lett. 68, 476–479 (1992).
  3. Y. K. Kim, P. M. Lundquist, J. A. Helfrich, J. M. Mikrut, G. K. Wong, P. W. Auvil, and J. B. Ketterson, “Scanning plasmon optical microscope,” Appl. Phys. Lett. 66, 3407–3409 (1995).
  4. Y. K. Kim, J. B. Ketterson, and D. J. Morgan, “Scanning plasmon optical microscope operation in atomic force microscope mode,” Opt. Lett. 21, 165–167 (1996).
  5. P. Dawson, F. de Fornel, and J. P. Goudonnet, “Imaging of surface plasmon propagation and edge interaction using a photon scanning tunneling microscope,” Phys. Rev. Lett. 72, 2927–2930 (1994).
  6. B. Hecht, L. Novotny, H. Bielefeldt, Y. Inouye, and D. W. Pohl, “Local excitation, scattering, and interferences of surface plasmons,” Phys. Rev. Lett. 77, 1889–1892 (1996).
  7. I. I. Smolyaninov, D. L. Mazzoni, and C. C. Davis, “Imaging of surface plasmon scattering by lithographically created individual surface defects,” Phys. Rev. Lett. 77, 3877–3880 (1996).
  8. S. I. Bozhevolnyi and F. A. Pudonin, “Two-dimensional micro-optics of surface plasmons,” Phys. Rev. Lett. 78, 2823–2826 (1997).
  9. A. Bouhelier, Th. Huser, J. M. Freyland, H.-J. Güntherodt, and D. W. Pohl, “Plasmon transmissivity and reflectivity of narrow grooves in a silver film,” J. Microsc. 194, 571–573 (1999).
  10. F. Pincemin, A. A. Maradudin, A. D. Boardman, and J. J. Greffet, “Scattering of a surface plasmon polariton by a surface defect,” Phys. Rev. B 50, 15261–15275 (1994).
  11. A. V. Shchegrov, I. V. Novikov, and A. A. Maradudin, “Scattering of surface plasmon polaritons by a circularly symmetric surface defect,” Phys. Rev. Lett. 78, 4269–4272 (1997).
  12. L. Novotny, B. Hecht, and D. W. Pohl, “Interference of locally excited surface plasmons,” J. Appl. Phys. 21, 1798–1806 (1997).
  13. J. A. Sanchez-Gil, “Surface defect scattering of surface plasmon polaritons: mirrors and light emitters,” Appl. Phys. Lett. 73, 3509–3511 (1998).
  14. D. Van Labeke, F. I. Baida, and J. M. Vigoureux, “A theoretical study of near-field detection and excitation of surface plasmons,” Ultramicroscopy 71, 351–359 (1998).
  15. F. I. Baida, D. Van Labeke, and J. M. Vigoureux, “Near-field surface plasmon microscopy. A numerical study of plasmon excitation, propagation and edge interaction using a three-dimensional Gaussian beam,” Phys. Rev. B 60, 7812–7815 (1999).
  16. P. Dawson, K. W. Smith, F. de Fornel, and J.-P. Goudonnet, “Imaging of surface plasmon launch and propagation using a photon scanning tunneling microscope,” Ultramicroscopy 57, 287–292 (1995).
  17. B. Hecht, D. W. Pohl, H. Heinzelmann, and L. Novotny, “Tunnel near field optical microscopy: TNOM-2,” Ultramicroscopy 61, 99–104 (1995).
  18. Th. Huser, L. Novotny, Th. Lacoste, R. Eckert, and H. Heinzelmann, “Observation and analysis of near-field optical diffraction,” J. Opt. Soc. Am. A 16, 141–148 (1999).
  19. D. Van Labeke, F. Baida, D. Barchiesi, and D. Courjon, “A theoretical model for the inverse scanning tunneling optical microscope (ISTOM),” Opt. Commun. 114, 470–480 (1995).
  20. V. I. Tatarski, “Relation between the Rayleigh equation in diffraction theory and the equation based on Green’s formula,” J. Opt. Soc. Am. A 12, 1254–1260 (1995).
  21. F. I. Baida, D. Van Labeke, and J. M. Vigoureux, “Theoretical study of near-field surface plasmon excitation, propagation and diffraction,” Opt. Commun. 171, 317–331 (1999).
  22. C. J. Bouwkamp, “Diffraction theory,” Rep. Prog. Phys. 27, 35–100 (1954).
  23. D. Van Labeke, D. Barchiesi, and F. Baida, “Optical characterization of nanosources used in scanning near-field optical microscopy,” J. Opt. Soc. Am. A 12, 695–703 (1995).
  24. S. I. Bozhevolnyi, B. Vohnsen, and E. A. Bozevolnaya, “Transfer functions in collection scanning near-field optical microscopy,” Opt. Commun. 172, 171–179 (1999).
  25. J. C. Weeber, F. de Fornel, and J. P. Goudonnet, “Numerical study of the tip-sample interaction in the photon scanning tunneling microscope,” Opt. Commun. 126, 285–292 (1996).
  26. A. Madrazo and M. Nieto-Vesperinas, “Surface structure and polariton interactions in the scattering of electromagnetic waves from a cylinder in front of a conducting grating: theory for the reflection photon scanning tunneling microscope,” J. Opt. Soc. Am. A 13, 785–795 (1996).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited