OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Vol. 18, Iss. 9 — Sep. 1, 2001
  • pp: 2121–2131

Intensity-weighted phase-derivative statistics

Eric Jakeman, Stephen M. Watson, and Kevin D. Ridley  »View Author Affiliations

JOSA A, Vol. 18, Issue 9, pp. 2121-2131 (2001)

View Full Text Article

Enhanced HTML    Acrobat PDF (215 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



It is shown that amplitude weighting can improve the accuracy of measurements of the frequency offset of a signal contaminated by multiplicative Gaussian noise. The more general non-Gaussian case is investigated through study of the statistics of a simple phase-screen scattering model. Formulas are derived for the low-order moments of the intensity-weighted phase derivative. Numerical simulation is tested against these results and is used to generate full probability densities that are analytically intractable and to determine the optimum weighting for the non-Gaussian regime of the model. The results are relevant to a variety of remote-sensing and signal-processing problems.

© 2001 Optical Society of America

OCIS Codes
(010.1300) Atmospheric and oceanic optics : Atmospheric propagation
(030.6600) Coherence and statistical optics : Statistical optics
(120.5050) Instrumentation, measurement, and metrology : Phase measurement
(120.7280) Instrumentation, measurement, and metrology : Vibration analysis
(290.0290) Scattering : Scattering

Original Manuscript: November 16, 2000
Revised Manuscript: February 20, 2001
Manuscript Accepted: February 20, 2001
Published: September 1, 2001

Eric Jakeman, Stephen M. Watson, and Kevin D. Ridley, "Intensity-weighted phase-derivative statistics," J. Opt. Soc. Am. A 18, 2121-2131 (2001)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. F. Miller, K. Schatzel, B. Vincent, “The determination of very small electrophoretic mobilities in polar and non-polar colloidal dispersions using phase analysis light scattering,” J. Colloid. Interface Sci. 143, 532–554 (1991). [CrossRef]
  2. A. L. Kachelmyer, K. I. Schultz, “Laser vibration sensing,” Lincoln Lab. J. 8, 3–28 (1995).
  3. I. Renhorn, C. Karlsson, D. Letalick, M. Millnert, R. Rutgers, “Coherent laser radar for vibrometry: robust design and adaptive signal processing ,” in Applied Radar Technology II, Gary W. Kamerman, ed., Proc. SPIE2472, 23–30 (1995). [CrossRef]
  4. R. S. Eng, C. Freed, R. H. Kingston, K. I. Schultz, A. L. Katchelmyer, W. E. Keicher, “The effect of laser phase noise on laser radar performance,” Proceedings of the International Conference on Lasers—LASER ’92 (STS Press, McLean, Va., 1993), pp. 605–620.
  5. K. D. Ridley, E. Jakeman, “FM demodulation in the presence of multiplicative and additive noise,” Inverse Probl. 15, 214–219 (1999). [CrossRef]
  6. D. K. Asano, S. Pasupathy, “Improved post detection processing for limiter-discriminator detection of CMP in a Rayleigh, fast-fading channel,” IEEE Trans. Veh. Technol. 44, 729–734 (1995). [CrossRef]
  7. R. H. Delano, “A theory of target glint or angular scintillation in radar tracking,” Proc. IRE 41, 1778–1784 (1953). [CrossRef]
  8. B. Borden, “Requirement for optimal glint reduction by diversity methods,” IEEE Trans. Aerosp. Electron. Syst. 30, 1108–1114 (1994). [CrossRef]
  9. R. P. Mercier, “Diffraction by a screen causing large random phase fluctuations,” Proc. Cambridge Philos. Soc. A 58, 382–400 (1962). [CrossRef]
  10. H. G. Booker, J. A. Ratcliffe, D. H. Shinn, “Diffraction from an irregular screen with applications to ionospheric problems,” Philos. Trans. R. Soc. London Ser. A 242, 579–609 (1950). [CrossRef]
  11. E. E. Salpeter, “Interplanetary scintillations: theory,” Astrophys. J. 147, 433–448 (1967). [CrossRef]
  12. L. S. Taylor, C. J. Infosino, “Diffraction theory of optical scintillations due to turbulent layers,” J. Opt. Soc. Am. 65, 78–84 (1975). [CrossRef]
  13. A. M. Prokhorov, F. V. Bunkin, K. S. Gochelashvily, V. I. Shishov, “Laser irradiance propagation in turbulent media,” Proc. IEEE 63, 790–811 (1975). [CrossRef]
  14. P. Beckmann, A. Spizzichino, The Scattering of Electromagnetic Waves from Rough Surfaces (Pergamon, Oxford, 1963; reprinted by Artech House Inc., Norwood, Mass., 1987).
  15. J. A. Ogilvy, Theory of Scattering from Random Rough Surfaces (Hilger, Bristol, 1991).
  16. J. Parent, A. Bourdillon, “A method to correct HF Skywave back-scattered signals for ionospheric frequency modulation,” IEEE Trans. Antennas Propag. 36, 127–135 (1988). [CrossRef]
  17. D. Middleton, An Introduction to Statistical Communication Theory (Institute of Electrical and Electronics Engineers, New York, 1996).
  18. S. O. Rice, “Statistical properties of a sine wave plus random noise,” Bell Syst. Tech. J. 27, 109–157 (1948). [CrossRef]
  19. B. A. van Tiggelen, P. Sebbah, M. Stoytchev, A. Z. Genack, “Delay-time statistics for diffuse waves,” Phys. Rev. E 59, 7166–7172 (1999). [CrossRef]
  20. E. Jakeman, R. J. A. Tough, “Non-Gaussian models for the statistics of scattered waves,” Adv. Phys. 37, 471–529 (1988). [CrossRef]
  21. E. Jakeman, J. G. McWhirter, “Correlation model dependence of the scintillation behind a deep random phase screen,” J. Phys. A. Math. Gen. 10, 1599–1643 (1977). [CrossRef]
  22. E. Jakeman, “Fresnel scattering by a corrugated random surface with fractal slope,” J. Opt. Soc. Am. 72, 1034–1041 (1982). [CrossRef]
  23. E. Jakeman, J. G. McWhirter, “Fluctuations in radiation scattered into the Fresnel Region by a random phase screen in uniform motion,” J. Phys. A Math. Gen. 9, 785–797 (1976). [CrossRef]
  24. E. Jakeman, J. G. McWhirter, P. N. Pusey, “Enhanced fluctuations in radiation scattered by a moving random phase screen,” J. Opt. Soc. Am. 66, 1175–1182 (1976). [CrossRef]
  25. M. Abramowitz, I. A. Stegun, Handbook of Mathematical Functions (Dover, New York, 1965).
  26. J. M. Martin, S. M. Flatte, “Simulation of point-source scintillation through three-dimensional random media,” J. Opt. Soc. Am. A 7, 838–846 (1990). [CrossRef]
  27. K. D. Ridley, E. Jakeman, “Incomplete phase conjugation through a random phase screen. II. Numerical simulations,” J. Opt. Soc. Am. A 13, 2393–2402 (1996). [CrossRef]
  28. K. D. Ridley, E. Jakeman, “Signal to noise analysis of FM demodulation in the presence of multiplicative and additive noise,” Signal Process. 80, 1895–1970 (2000). [CrossRef]
  29. A. Papoulis, Probability, Random Variables and Stochastic Processes (McGraw–Hill, New York, 1965).
  30. R. Buckley, “Diffraction by a random phase-changing screen: a numerical experiment,” J. Atmos. Terr. Phys. 37, 1431–1446 (1975). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited