OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Vol. 18, Iss. 9 — Sep. 1, 2001
  • pp: 2153–2160

Optical pulse propagation in a Fabry–Perot etalon: analytical discussion

Jin Yu, Shi Yuan, Jin-Yue Gao, and Lianzhi Sun  »View Author Affiliations

JOSA A, Vol. 18, Issue 9, pp. 2153-2160 (2001)

View Full Text Article

Enhanced HTML    Acrobat PDF (184 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The phase modulation and dispersion property of a Fabry–Perot etalon are investigated analytically. It is demonstrated that within the resonant dispersion region in the etalon transmission spectrum, effective time delay of light pulse propagation can be achieved, and the maximum delay period can be simply related to the mirror reflectivity and optical length of the etalon. With a much simplified model, the influences of etalon parameters on the transmitted Gaussian pulse are evaluated, and simple relations regarding pulse distortion and energy loss are obtained to illustrate the temporal properties of the etalon.

© 2001 Optical Society of America

OCIS Codes
(050.2230) Diffraction and gratings : Fabry-Perot
(230.5750) Optical devices : Resonators
(260.2030) Physical optics : Dispersion
(260.3160) Physical optics : Interference
(350.5500) Other areas of optics : Propagation

Original Manuscript: March 12, 2001
Manuscript Accepted: March 13, 2001
Published: September 1, 2001

Jin Yu, Shi Yuan, Jin-Yue Gao, and Lianzhi Sun, "Optical pulse propagation in a Fabry–Perot etalon: analytical discussion," J. Opt. Soc. Am. A 18, 2153-2160 (2001)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. O. Scully, M. Fleischhauer, “High-sensitivity magnetometer based on index-enhanced media,” Phys. Rev. Lett. 69, 1360–1363 (1992). [CrossRef] [PubMed]
  2. O. Schmidt, R. Wynands, Z. Hussein, D. Meschede, “Steep dispersion and group velocity below c/3000 in coherent population trapping,” Phys. Rev. A 53, R27–R30 (1996). [CrossRef] [PubMed]
  3. J. Marangos, “Slow light in cool atoms,” Nature 397, 559–560 (1999). [CrossRef]
  4. A. M. Steinberg, P. G. Kwiat, R. Y. Chiao, “Measurement of single-photon tunneling time,” Phys. Rev. Lett. 71, 708–711 (1993). [CrossRef] [PubMed]
  5. A. M. Steinberg, R. Y. Chiao, “Subfemtosecond determination of transmission delay time for a dielectric mirror (photonic band gap) as a function of the angle of incidence,” Phys. Rev. A 51, 3525–3528 (1995). [CrossRef] [PubMed]
  6. Ch. Spielmann, R. Szipocs, A. Stingl, F. Krausz, “Tunneling of optical pulses through photonic band gaps,” Phys. Rev. Lett. 73, 2308–2311 (1994). [CrossRef] [PubMed]
  7. M. Scalora, R. J. Flynn, S. B. Reinhardt, R. L. Fork, M. J. Boemer, M. D. Tocci, C. M. Bowden, H. S. Ledbetter, J. M. Bendickson, J. P. Dowling, R. P. Leavitt, “Ultrashort pulse propagation at the photonic band edge: large tun-able group delay with minimal distortion and loss,” Phys. Rev. E 54, R1078–R1081 (1996). [CrossRef]
  8. E. Yablonovitch, T. J. Gmitter, R. D. Meade, A. M. Rappe, K. D. Brommer, J. D. Joannopoulos, “Donor and acceptor modes in photonic band structure,” Phys. Rev. Lett. 67, 3380–3383 (1991). [CrossRef] [PubMed]
  9. S. Zhu, N. Liu, H. Zheng, H. Chen, “Time delay of light propagation through defect modes of one-dimensional photonic band-gap structures,” Opt. Commun. 174, 139–144 (2000). [CrossRef]
  10. D. Huber, J. B. Carroll, “Time domain response of an optically frequency swept Fabry–Perot interferometer,” Appl. Opt. 25, 2386–2390 (1986). [CrossRef]
  11. G. Cesini, G. Guattari, G. Lucarini, C. Palma, “Response of Fabry–Perot interferometer to amplitude-modulated light beams,” Opt. Acta 24, 1217–1236 (1977). [CrossRef]
  12. C. Roychoudhuri, “Response of Fabry–Perot interferometers to light pulses of very short duration,” J. Opt. Soc. Am. 65, 1418–1426 (1975). [CrossRef]
  13. A. Giazatto, “Interferometric detection of gravitation waves,” Phys. Rep. 182, 365–425 (1989). [CrossRef]
  14. P. Grosse, V. Offermann, “Analysis of reflectance data using the Kramers–Kronig relations,” Appl. Phys. A 52, 138–144 (1991). [CrossRef]
  15. S. Maeda, G. Thyagarajan, P. N. Schatz, “Absolute infrared intensity measurement in thin films. II. Solids deposited on Halide plates,” J. Chem. Phys. 39, 3474–3481 (1963). [CrossRef]
  16. K. Kozima, W. Suëtaka, P. N. Schatz, “Optical constants of thin films by a Kramers–Kronig method,” J. Opt. Soc. Am. 56, 181–184 (1966). [CrossRef]
  17. J. P. Dowling, C. M. Bowden, “Anomalous index of refraction in photonic bandgap materials,” J. Mod. Opt. 41, 345–351 (1994). [CrossRef]
  18. E. H. Hauge, J. A. Støvneng, “Tunneling time: a critical review,” Rev. Mod. Phys. 61, 917–936 (1989). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited