OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Vol. 18, Iss. 9 — Sep. 1, 2001
  • pp: 2179–2189

Centrifugal bias for second-order but not first-order motion

Serge O. Dumoulin, Curtis L. Baker, Jr.,, and Robert F. Hess  »View Author Affiliations


JOSA A, Vol. 18, Issue 9, pp. 2179-2189 (2001)
http://dx.doi.org/10.1364/JOSAA.18.002179


View Full Text Article

Acrobat PDF (369 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Limited-lifetime Gabor stimuli were used to assess both first- and second-order motion in peripheral vision. Both first- and second-order motion mechanisms were present at a 20-deg eccentricity. Second-order motion, unlike first-order, exhibits a bias for centrifugal motion, suggesting a role for the second-order mechanism in optic flow processing.

© 2001 Optical Society of America

OCIS Codes
(330.4150) Vision, color, and visual optics : Motion detection
(330.4270) Vision, color, and visual optics : Vision system neurophysiology
(330.5510) Vision, color, and visual optics : Psychophysics
(330.7310) Vision, color, and visual optics : Vision

Citation
Serge O. Dumoulin, Curtis L. Baker, Jr.,, and Robert F. Hess, "Centrifugal bias for second-order but not first-order motion," J. Opt. Soc. Am. A 18, 2179-2189 (2001)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-18-9-2179


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. C. Chubb and G. Sperling, “Drift-balanced random stimuli: a general basis for studying non-Fourier motion perception,” J. Opt. Soc. Am. A 5, 1986–2007 (1988).
  2. P. Cavanagh and G. Mather, “Motion: the long and short of it,” Spatial Vision 4, 103–129 (1989).
  3. A. T. Smith, “The detection of second-order motion,” in Visual Detection of Motion, A. T. Smith and R. J. Snowdon, eds. (Academic, London, 1994), pp. 145–176.
  4. C. L. Baker, Jr., “Central neural mechanisms for detecting second-order motion,” Curr. Opin. Neurobiol. 9, 461–466 (1999).
  5. Z.-L. Lu and G. Sperling, “The functional architecture of human visual motion perception,” Vision Res. 35, 2697–2722 (1995).
  6. P. J. Bex and C. L. Baker, Jr., “Motion perception over long interstimulus intervals,” Percept. Psychophys. 61, 1066–1074 (1999).
  7. T. Ledgeway and R. F. Hess, “The properties of the motion-detecting mechanisms mediating perceived direction in stochastic displays,” Vision Res. 40, 3585–3597 (2000).
  8. N. E. Scott-Samuel and M. A. Georgeson, “Does early non-linearity account for second-order motion?” Vision Res. 39, 2853–2865 (1999).
  9. I. A. Holliday and S. J. Anderson, “Different processes underlie the detection of second-order motion at low and high temporal frequencies,” Proc. R. Soc. London 257, 165–173 (1994).
  10. M. S. Landy, B. A. Dosher, G. Sperling, and M. E. Perkins, “The kinetic depth effect and optic flow—II. First- and second-order motion,” Vision Res. 31, 859–876 (1991).
  11. L. R. Harris and A. T. Smith, “Motion defined exclusively by second-order characteristics does not evoke optokinetic nystagmus,” Visual Neurosci. 9, 565–570 (1992).
  12. G. Mather and S. West, “Evidence for second-order detectors,” Vision Res. 33, 1109–1112 (1993).
  13. T. Ledgeway and A. T. Smith, “Evidence for separate motion-detecting mechanisms for first- and second-order motion,” Vision Res. 34, 2727–2740 (1994).
  14. S. Nishida, T. Ledgeway, and M. Edwards, “Dual multiple-scale processing for motion in the human visual system,” Vision Res. 37, 2685–2698 (1997).
  15. N. E. Scott-Samuel and A. T. Smith, “No local cancellation between directionally opposed first-order and second-order signals,” Vision Res. 40, 3495–3500 (2000).
  16. G. Mather, “First-order and second-order visual processes in the perception of motion and tilt,” Vision Res. 31, 161–167 (1991).
  17. T. Ledgeway and A. T. Smith, “The duration of the motion aftereffect following adaptation to first-order and second-order motion,” Perception 23, 1211–1219 (1994).
  18. S. Nishida, H. Ashida, and T. Sato, “Complete interocular transfer of motion aftereffect with flickering test,” Vision Res. 34, 2707–2716 (1994).
  19. R. Gurnsey, D. Fleet, and C. Potechin, “Second-order motions contribute to vection,” Vision Res. 38, 1801–2816 (1998).
  20. C. Habak and J. Faubert, “Larger effect of aging on the perception of higher-order stimuli,” Vision Res. 40, 943–950 (2000).
  21. L. M. Vaina and A. Cowey, “Impairment of the perception of second order motion but not first order motion in a patient with unilateral focal brain damage,” Proc. R. Soc. London Ser. B 263, 1225–1232 (1996).
  22. L. M. Vaina, N. Makris, D. Kennedy, and A. Cowey, “The selective impairment of the perception of first-order motion by unilateral cortical brain damage,” Visual Neurosci. 15, 333–348 (1998).
  23. L. M. Vaina, A. Cowey, and D. Kennedy, “Perception of first- and second-order motion: separable neurological mechanisms?” Hum. Brain Mapp. 7, 67–77 (1999).
  24. M. W. Greenlee and A. T. Smith, “Detection and discrimination of first- and second-order motion in patients with unilateral brain damage,” J. Neurosci. 17, 804–818 (1997).
  25. Y.-X. Zhou and C. L. Baker, Jr., “A processing stream in mammalian visual cortex neurons for non-Fourier responses,” Science 261, 98–101 (1993).
  26. Y.-X. Zhou and C. L. Baker, Jr., “Envelope-responsive neurons in areas 17 and 18 of cat,” J. Neurophysiol. 72, 2134–2150 (1994).
  27. Y.-X. Zhou and C. L. Baker, Jr., “Spatial properties of envelope-responsive cells in area 17 and 18 neurons of the cat,” J. Neurophysiol. 75, 1038–1050 (1996).
  28. I. Mareschal and C. L. Baker, Jr., “A cortical locus for the processing of contrast-defined contours,” Nat. Neurosci. 1, 150–154 (1998).
  29. I. Mareschal and C. L. Baker, Jr., “Temporal and spatial response to second-order stimuli in cat area 18,” J. Neurophysiol. 80, 2811–2823 (1998).
  30. I. Mareschal and C. L. Baker, Jr., “Cortical processing of second-order motion,” Visual Neurosci. 16, 527–540 (1999).
  31. T. D. Albright, “Form–cue invariant motion processing in the primate visual cortex,” Science 255, 1141–1143 (1992).
  32. J. F. Olavarria, E. A. DeYoe, J. J. Knierim, J. M. Fox, and D. C. van Essen, “Neural responses to visual texture patterns in middle temporal area of the macaque monkey,” J. Neurophysiol. 68, 164–181 (1992).
  33. B. J. Geesaman and R. A. Andersen, “The analysis of complex motion patterns by form/cue invariant MDTd neurons,” J. Neurophysiol. 16, 4716–4732 (1996).
  34. L. P. O’Keefe and J. A. Movshon, “Processing of first- and second-order motion signals by neurons in area MT of the macaque monkey,” Visual Neurosci. 15, 305–317 (1998).
  35. E. A. Adelson and J. R. Bergen, “Spatiotemporal energy models for the perception of motion,” J. Opt. Soc. Am. A 2, 284–299 (1985).
  36. J. C. Boulton and C. L. Baker, Jr., “Motion detection is dependent on spatial frequency not size,” Vision Res. 31, 77–87 (1991).
  37. C. W. G. Clifford, J. N. Freedman, and L. M. Vaina, “First- and second- order motion perception in Gabor micropattern stimuli: psychophysics and computational modelling,” Cogn. Brain Res. 6, 263–271 (1998).
  38. C. L. Baker, Jr., and R. F. Hess, “Two mechanisms underlie processing of stochastic motion stimuli,” Vision Res. 38, 1211–1222 (1998).
  39. J. C. Boulton and C. L. Baker, Jr., “Psychophysical evidence for both a ‘quasi-linear’ and a ‘non-linear’ mechanism for the detection of motion,” in Computational Vision Based on Neurobiology, T. B. Lawton, ed., Proc. SPIE 2054, 124–133 (1994).
  40. J. C. Boulton and C. L. Baker, Jr., “Dependence on stimulus onset asynchrony in apparent motion: evidence for two mechanisms,” Vision Res. 33, 2013–2019 (1993).
  41. J. C. Boulton and C. L. Baker, Jr., “Different parameters control motion perception above and below a critical density,” Vision Res. 33, 1803–1811 (1993).
  42. P. J. Bex and C. L. Baker, Jr., “The effects of distractor elements on direction discrimination in random Gabor kinematograms,” Vision Res. 37, 1761–1767 (1997).
  43. A. Pantle, “Immobility of some second-order stimuli in human peripheral vision,” J. Opt. Soc. Am. A 9, 863–867 (1992).
  44. J. McCarthy, A. Pantle, and A. Pinkus, “Detection and direction discrimination performance with flicker gratings in peripheral vision,” Vision Res. 36, 763–773 (1994).
  45. J. M. Zanker, “Second-order motion perception in the peripheral visual field,” J. Opt. Soc. Am. A 14, 1385–1392 (1997).
  46. A. T. Smith, R. F. Hess, and C. L. Baker, Jr., “Direction identification thresholds for second-order motion in central and peripheral vision,” J. Opt. Soc. Am. A 11, 506–514 (1994).
  47. J. A. Solomon and G. Sperling, “1st- and 2nd-order motion and texture resolution in central and peripheral vision,” Vision Res. 35, 59–64 (1995).
  48. A. T. Smith and T. Ledgeway, “Sensitivity to second-order motion as a function of temporal frequency and eccentricity,” Vision Res. 38, 403–410 (1997).
  49. Y.-Z. Wang, R. F. Hess, and C. L. Baker, Jr., “Second-order motion perception in peripheral vision: limits of early filtering,” J. Opt. Soc. Am. A 14, 3145–3153 (1997).
  50. J. J. Gibson, “The visual perception of objective and subjective movement,” Psychol. Rev. 61, 304–314 (1954).
  51. K. Nakayama, “Biological motion processing: a review,” Vision Res. 25, 625–660 (1985).
  52. M. A. Georgeson and M. G. Harris, “Apparent foveofugal drift of counterphase gratings,” Perception 7, 527–536 (1978).
  53. K. Ball and R. Sekuler, “Human vision favors centrifugal motion,” Perception 9, 317–325 (1980).
  54. S. Mateeff and J. Hohnsbein, “Perceptual latencies are shorter for motion towards the fovea than for motion away,” Vision Res. 28, 711–719 (1988).
  55. M. Fahle and C. Wehrhahn, “Motion perception in the peripheral visual field,” Graefes Arch. Clin. Exp. Ophthalmol. 229, 430–436 (1991).
  56. S. Mateeff, N. Yakimoff, J. Hohnsbein, W. H. Ehrenstein, Z. Bodanecky, and T. Radil, “Selective directional sensitivityin visual motion perception,” Vision Res. 31, 131–138 (1991).
  57. S. Mateeff, J. Hohnsbein, W. H. Ehrenstein, and N. Yakimoff, “A constant latency difference determines directional anisotropy in visual motion perception,” Vision Res. 31, 2235–2237 (1991).
  58. W. A. van de Grind, J. J. Koenderink, A. J. van Doorn, M. V. Milders, and H. Voerman, “Inhomogeneity and anisotropies for motion detection in the monocular visual field of human observers,” Vision Res. 33, 1089–1107 (1992).
  59. M. Edwards and D. R. Badcock, “Asymmetries in the sensitivity to motion in depth: a centripetal bias,” Perception 22, 1013–1023 (1993).
  60. J. E. Raymond, “Directional anisotropy of motion sensitivity across the visual field,” Vision Res. 34, 1029–1037 (1994).
  61. Y. Ohtani and Y. Ejima, “Anisotropy for direction discrimination in a two-frame apparent motion display,” Vision Res. 37, 765–767 (1997).
  62. B. L. Gros, R. Blake, and E. Hiris, “Anisotropies in visual perception: a fresh look,” J. Opt. Soc. Am. A 15, 2003–2011 (1998).
  63. P. Bakan and K. Mizusawa, “Effect of inspection time and direction of rotation on a generalized form of the spiral aftereffect,” J. Exp. Psychol. 65, 583–586 (1993).
  64. T. R. Scott, A. D. Lavender, R. A. McWirth, and D. A. Powell, “Directional asymmetry of motion aftereffect,” J. Exp. Psychol. 71, 806–815 (1966).
  65. T. D. Albright, “Centrifugal directional bias in the middle temporal visual area (MT) of the macaque,” Visual Neurosci. 2, 177–188 (1989).
  66. D. Pelli and L. Zhang, “Accurate control of contrast on microcomputer displays,” Vision Res. 31, 1337–1350 (1991).
  67. D. G. Pelli, “The VideoToolbox software for visual psychophysics: transforming numbers into movies,” Spatial Vision 10, 437–442 (1997).
  68. P. Cavanagh, “Attention-based motion perception,” Science 257, 1563–1565 (1992).
  69. O. Braddick, “A short-range process in apparent movement,” Vision Res. 14, 519–527 (1974).
  70. K. Nakayama, “Differential motion hyperacuity under conditions of common image motion,” Vision Res. 21, 1475–1482 (1981).
  71. C. L. Baker, Jr., and O. J. Braddick, “Eccentricity-dependent scaling of the limits for short-range apparent motion perception,” Vision Res. 25, 803–812 (1985).
  72. M. G. Harris, “Optic and retinal flow,” in Visual Detection of Motion, A. T. Smith and R. J. Snowdon, eds. (Academic, London, 1994), pp. 307–332.
  73. L. R. Harris, “Visual motion caused by movements of the eye, head and body,” in Visual Detection of Motion, A. T. Smith and R. J. Snowdon, eds. (Academic, London, 1994), pp. 397–435.
  74. E. C. Hildreth and C. S. Royden, “Computing observer motion from optical flow,” in High-Level Motion Processing: Computational, Neurobiological, and Psychophysical Perspectives, T. Watanabe, ed. (MIT Press, Cambridge, Mass., 1998), pp. 269–293.
  75. A. E. Seiffert and P. Cavanagh, “Position displacement, not velocity, is the cue to motion detection of second-order stimuli,” Vision Res. 38, 3569–3582 (1998).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited