OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Vol. 19, Iss. 12 — Dec. 1, 2002
  • pp: 2495–2509

Analysis of spectroscopic measurements of leaf water content at terahertz frequencies using linear transforms

Sillas Hadjiloucas, Roberto K. H. Galvão, and John W. Bowen  »View Author Affiliations

JOSA A, Vol. 19, Issue 12, pp. 2495-2509 (2002)

View Full Text Article

Enhanced HTML    Acrobat PDF (327 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We provide a unified framework for a range of linear transforms that can be used for the analysis of terahertz spectroscopic data, with particular emphasis on their application to the measurement of leaf water content. The use of linear transforms for filtering, regression, and classification is discussed. For illustration, a classification problem involving leaves at three stages of drought and a prediction problem involving simulated spectra are presented. Issues resulting from scaling the data set are discussed. Using Lagrange multipliers, we arrive at the transform that yields the maximum separation between the spectra and show that this optimal transform is equivalent to computing the Euclidean distance between the samples. The optimal linear transform is compared with the average for all the spectra as well as with the Karhunen–Loève transform to discriminate a wet leaf from a dry leaf. We show that taking several principal components into account is equivalent to defining new axes in which data are to be analyzed. The procedure shows that the coefficients of the Karhunen–Loève transform are well suited to the process of classification of spectra. This is in line with expectations, as these coefficients are built from the statistical properties of the data set analyzed.

© 2002 Optical Society of America

OCIS Codes
(010.7340) Atmospheric and oceanic optics : Water
(070.6020) Fourier optics and signal processing : Continuous optical signal processing
(100.7410) Image processing : Wavelets
(170.1580) Medical optics and biotechnology : Chemometrics
(300.6270) Spectroscopy : Spectroscopy, far infrared
(300.6300) Spectroscopy : Spectroscopy, Fourier transforms
(330.6180) Vision, color, and visual optics : Spectral discrimination
(350.6980) Other areas of optics : Transforms

Original Manuscript: January 29, 2002
Revised Manuscript: May 28, 2002
Manuscript Accepted: May 28, 2002
Published: December 1, 2002

Sillas Hadjiloucas, Roberto K. H. Galvão, and John W. Bowen, "Analysis of spectroscopic measurements of leaf water content at terahertz frequencies using linear transforms," J. Opt. Soc. Am. A 19, 2495-2509 (2002)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. S. Boyer, Measuring the Water Content of Plants and Soils (Academic, San Diego, Calif., 1995).
  2. P. S. Nobel, Physicochemical and Environmental Plant Physiology (Academic, San Diego, Calif., 1991).
  3. S. Hadjiloucas, L. S. Karatzas, J. W. Bowen, “Measurements of leaf water content using terahertz radiation,” IEEE Trans. Microwave Theory Tech. 47, 142–149 (1999). [CrossRef]
  4. M. Koch, “THz imaging: fundamentals and biological applications,” in Terahertz Spectroscopy and Applications II, J. M. Chamberlain, ed., Proc. SPIE3828, 202–208 (1999). [CrossRef]
  5. M. Koch, K. Schmalstieg, P. Knobloch, S. Hunsche, M. C. Nuss, E. Rehberg, I. Sautter, J. Fromm, M. Hempel, R. Haferkorn, I. Libon, N. E. Hecker, J. Feldmann, “THz imaging of biological samples,” in Terahertz Sources and Systems, Vol. 27 of NATO Science Series II, R. E. Miles, P. Harrison, D. Lippens, eds., (Kluwer Academic, Dordrecht, The Netherlands, 2000), pp. 241–258.
  6. D. M. Mittleman, R. H. Jacobsen, M. C. Nuss, “T-ray imaging,” IEEE J. Sel. Top. Quantum Electron. 2, 679–692 (1996). [CrossRef]
  7. X.-C. Zhang, “Next rays? T. ray!” presented at the Plenary Session of the 26th International Conference on Infrared and Millimeter Waves, Toulouse, France, September 2001.
  8. D. W. van der Weide, J. Murakowski, F. Keilmann, “Gas-absorption spectroscopy with electronic terahertz techniques,” IEEE Trans. Microwave Theory Tech. 48, 740–743 (2000). [CrossRef]
  9. R. K. H. Galvão, M. F. Pimentel, M. C. U. Araujo, T. Yoneyama, V. Visani, “Aspects of the successive projections algorithm for variable selection in multivariate calibration applied to plasma emission spectrometry,” Anal. Chim. Acta 443, 107–115 (2001). [CrossRef]
  10. H. C. Goicoechea, A. C. Olivieri, “Wavelength selection by net analyte signals calculated with multivariate factor-based hybrid linear analysis (HLA). A theoretical and experimental comparison with partial least-squares (PLS),” Analyst (London) 124, 725–731 (1999).
  11. J. Sustek, “Method for choice of optimal analytical positions in spectrophotometric analysis of multicomponent systems,” Ann. Geophys. 46, 1676–1679 (1974).
  12. S. Qian, D. Chen, Joint Time–Frequency Analysis—Methods and Applications (Prentice-Hall, Upper Saddle River, N.J., 1996).
  13. I. Daubechies, Ten Lectures on Wavelets (Society for Industrial and Applied Mathematics, Philadelphia, Pa., 1992).
  14. M. Misiti, Y. Misiti, G. Oppenheim, J. M. Poggi, Wavelet Toolbox User’s Guide (Mathworks, Natick, Mass., 1996).
  15. H. Martens, T. Naes, Multivariate Calibration (Wiley, London, 1993).
  16. B. G. Tabachnick, L. S. Fidell, Using Multivariate Statistics, 4th ed. (Allyn and Bacon, Boston, Mass., 2001).
  17. M. Soriano, C. Saloma, “Improved classification robustness for noisy cell images represented as principal-component projections in a hybrid recognition system,” Appl. Opt. 37, 3628–3638 (1998). [CrossRef]
  18. J. M. Lopez-Alonso, J. Alda, E. Bernabeu, “Principal-component characterization of noise for infrared images,” Appl. Opt. 41, 320–331 (2002). [CrossRef] [PubMed]
  19. L. Smrcok, M. Durik, V. Jorik, “Wavelet denoising of powder diffraction patterns,” Powder Diffr. 14, 300–304 (1999). [CrossRef]
  20. U. L. Pen, “Application of wavelets to filtering of noisy data,” Philos. Trans. R. Soc. London Ser. A 357, 2561–2571 (1999). [CrossRef]
  21. R. K. H. Galvão, S. Hadjiloucas, J. W. Bowen, “Use of the statistical properties of the wavelet transform coefficients for the optimization of integration time in Fourier transform spectrometry,” Opt. Lett. 27, 643–645 (2002). [CrossRef]
  22. D. M. Mittleman, R. H. Jacobsen, R. Neelamani, R. G. Baraniuk, M. C. Nuss, “Gas sensing using terahertz time-domain spectroscopy,” Appl. Phys. B 67, 379–390 (1998). [CrossRef]
  23. B. Ferguson, D. Abbott, “Wavelet de-noising of optical terahertz imaging data,” Fluctuat. Noise Lett. 1, L65–L70 (2001). [CrossRef]
  24. B. Ferguson, D. Abbott, “De-noising techniques for terahertz responses of biological samples,” Microelectron. J. 32, 943–953 (2001). [CrossRef]
  25. T. Naes, B. H. Mevik, “Understanding the collinearity problem in regression and discriminant analysis,” J. Chemom. 15, 413–426 (2001). [CrossRef]
  26. T. D. Dorney, R. G. Baraniuk, D. M. Mittleman, “Material parameter estimation using terahertz time-domain spectroscopy,” J. Opt. Soc. Am. A 18, 1562–1571 (2001). [CrossRef]
  27. J. R. Birch, T. J. Parker, “Dispersive Fourier transform spectrometry,” in Infrared and Millimeter Waves, K. Button, ed. (Academic, New York, 1979), Vol. 2, Chap. 3.
  28. J. R. Birch, “Pseudocoherence in dispersive Fourier transform spectroscopy,” Infrared Phys. 28, 345–352 (1998). [CrossRef]
  29. J. E. Bertie, “Optical constants,” in Handbook of Vibrational Spectroscopy, J. Chalmers, P. R. Griffiths, eds. (Wiley, New York, 2001).
  30. R. H. Jacobsen, D. M. Mittleman, M. C. Nuss, “Chemical recognition of gases and gas mixtures with terahertz waves,” Opt. Lett. 21, 2011–2013 (1996). [CrossRef] [PubMed]
  31. D. S. Venables, C. A. Schmuttenmaer, “Far-infrared spectra and associated dynamics in acetonitrile–water mixtures measured with femtosecond THz pulse spectroscopy,” J. Chem. Phys. 108, 4935–4944 (1998). [CrossRef]
  32. I. Facchin, C. Mello, M. I. M. S. Bueno, R. J. Poppi, “Simultaneous determination of lead and sulfur by energy-dispersive x-ray spectrometry. Comparison between artificial neural networks and other multivariate calibration methods,” X-Ray Spectrom. 28, 173–177 (1999). [CrossRef]
  33. P. Y. Han, M. Tani, M. Usami, S. Kono, R. Kersting, X.-C. Zhang, “A direct comparison between terahertz time-domain spectroscopy and far-infrared Fourier transform spectroscopy,” J. Appl. Phys. 89, 2357–2359 (2001). [CrossRef]
  34. Z. Jiang, X.-C. Zhang, “Single-shot spatial-temporal THz field imaging,” Opt. Lett. 23, 1114–1116 (1998). [CrossRef]
  35. R. O. Duda, P. E. Hart, Pattern Classification and Scene Analysis (Wiley, New York, 1973).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited