OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Vol. 19, Iss. 4 — Apr. 1, 2002
  • pp: 670–677

Comparison of the spatial-frequency selectivity of local and global motion detectors

Peter J. Bex and Steven C. Dakin  »View Author Affiliations

JOSA A, Vol. 19, Issue 4, pp. 670-677 (2002)

View Full Text Article

Acrobat PDF (731 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Convergent physiological and behavioral evidence indicates that the initial receptive fields responsible for motion detection are spatially localized. Consequently, the perception of global patterns of movement (such as expansion) requires that the output of these local mechanisms be integrated across visual space. We have differentiated local and global motion processes, with mixtures of coherent and incoherent moving patterns composed of bandpass filtered dots, and have measured their spatial-frequency selectivity. We report that local motion detectors show narrow-band spatial-frequency tuning (i.e., they respond only to a narrow range of spatial frequencies) but that global motion detectors show broadband spatial-frequency tuning (i.e., they integrate across a broad range of spatial frequencies), with a preference for low spatial frequencies.

© 2002 Optical Society of America

OCIS Codes
(330.0330) Vision, color, and visual optics : Vision, color, and visual optics
(330.6110) Vision, color, and visual optics : Spatial filtering

Peter J. Bex and Steven C. Dakin, "Comparison of the spatial-frequency selectivity of local and global motion detectors," J. Opt. Soc. Am. A 19, 670-677 (2002)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. D. H. Hubel and T. N. Wiesel, “Receptive fields and functional architecture of monkey striate cortex,” J. Physiol. (London) 195, 215–243 (1968).
  2. R. H. Wurtz, “Visual receptive fields of striate cortex neurons in awake monkeys,” J. Neurophysiol. 32, 727–742 (1969).
  3. P. H. Schiller, B. L. Finlay, and S. F. Volman, “Quantitative studies of single-cell properties in monkey striate cortex. I. Spatiotemporal organization of receptive fields,” J. Neurophysiol. 39, 1288–1399 (1976).
  4. S. J. Anderson and D. C. Burr, “Receptive field size of human motion detection units,” Vision Res. 27, 621–635 (1987).
  5. P. Verghese and L. S. Stone, “Combining speed information across space,” Vision Res. 35, 2811–2823 (1995).
  6. P. Verghese and L. S. Stone, “Perceived visual speed constrained by image segmentation,” Nature (London) 381, 161–163 (1996).
  7. D. Regan and K. I. Beverly, “Looming detectors in the human visual pathway,” Vision Res. 18, 415–421 (1978).
  8. T. C. A. Freeman and M. G. Harris, “Human sensitivity to expanding and rotating motion: effects of complementary masking and directional structure,” Vision Res. 32, 81–87 (1992).
  9. M. C. Morrone, D. C. Burr, and L. M. Vaina, “Two stages of visual processing for radial and circular motion,” Nature (London) 376, 507–509 (1995).
  10. M. C. Morrone, D. C. Burr, and S. Di Pietro, “Cardinal directions for visual optic flow,” Curr. Biol. 9, 763–766 (1999).
  11. D. C. Burr, M. C. Morrone, and L. M. Vaina, “Large receptive fields for optic flow detection in humans,” Vision Res. 38, 1731–1743 (1998).
  12. K. Gurney and M. J. Wright, “Rotation and radial motion thresholds support a two-stage model of differential-motion analysis,” Perception 25, 5–26 (1996).
  13. M. Lappe and J. P. Rauschecker, “An illusory transformation in a model of optic flow processing,” Vision Res. 35, 1619–1631 (1995).
  14. R. J. Snowden and A. B. Milne, “Phantom motion aftereffects—evidence of detectors for the analysis of optic flow,” Curr. Biol. 7, 717–722 (1997).
  15. P. J. Bex, A. B. Metha, and W. Makous, “Psychophysical evidence for a functional hierarchy of motion processing mechanisms,” J. Opt. Soc. Am. A 15, 769–776 (1998).
  16. P. J. Bex and W. Makous, “Radial motion looks faster,” Vision Res. 37, 3399–3405 (1997).
  17. P. J. Bex, A. B. Metha, and W. Makous, “Enhanced motion aftereffect for complex motions,” Vision Res. 39, 2229–2238 (1999).
  18. H. A. Saito, K. Tanaka, H. Isono, M. Yasuda, and A. Mikami, “Integration of direction signals of image motion in the superior temporal sulcus of the macaque monkey,” J. Neurosci. 61, 145–157 (1986).
  19. C. J. Duffy and R. H. Wurtz, “Sensitivity of MST neurons to optic flow stimuli. I. A continuum of response selectivity to large-field stimuli,” J. Neurophysiol. 65, 1329–1345 (1991).
  20. G. A. Orban, L. Lagae, A. Verri, S. Raiguel, D. Xiao, H. Maes, and V. Torre, “First-order analysis of optical flow in monkey brain,” Proc. Natl. Acad. Sci. USA 89, 2595–2599 (1992).
  21. K. Tanaka and H. Saito, “Analysis of motion of the visual field by direction, expansion/contraction, and rotation cells clustered in the dorsal part of the medial superior temporal area of the macaque monkey,” J. Neurophysiol. 62, 626–641 (1989).
  22. M. S. Graziano, R. A. Andersen, and R. J. Snowden, “Tuning of MST neurons to spiral motions,” J. Neurosci. 14, 54–67 (1994).
  23. J. Kim, K. Mulligan, and H. Sherk, “Simulated optic flow and extrastriate cortex. I: optic flow versus texture,” J. Neurophysiol. 77, 554–561 (1997).
  24. K. Mulligan, J. Kim, and H. Sherk, “Simulated optic flow and extrastriate cortex. II: responses to bar versus large-field stimuli,” J. Neurophysiol. 77, 562–570 (1997).
  25. H. G. Krapp and R. Hengstenberg, “Estimation of self motion by optic flow processing in single visual interneurons,” Nature (London) 384, 463–466 (1996).
  26. O. J. Braddick, “A short-range process in apparent motion,” Vision Res. 14, 519–527 (1974).
  27. J. J. Chang and B. Julesz, “Displacement limits for spatial frequency filtered random dot cinematograms in apparent motion,” Vision Res. 23, 1379–1385 (1983).
  28. J. J. Chang and B. Julesz, “Cooperative and non-cooperative processes of apparent movement of random-dot cinematograms,” Spatial Vision 1, 39–45 (1985).
  29. R. Cleary and O. J. Braddick, “Masking of low frequency information in short-range apparent motion,” Vision Res. 30, 317–327 (1990).
  30. R. Cleary and O. J. Braddick, “Direction discrimination for band-pass filtered random dot kinematograms,” Vision Res. 30, 303–316 (1990).
  31. W. F. Bischof and V. Di Lollo, “Perception of directional sampled motion in relation to displacement and spatial frequency: evidence for a unitary motion system,” Vision Res. 30, 1341–1362 (1990).
  32. M. J. Morgan and G. Mather, “Motion discrimination in two-frame sequences with differing spatial frequency content,” Vision Res. 34, 197–208 (1994).
  33. P. J. Bex, N. Brady, R. E. Fredericksen, and R. F. Hess, “Energetic motion detection,” Nature (London) 378, 670–672 (1995).
  34. R. A. Eagle and B. J. Rogers, “Motion detection is limited by element density not spatial frequency,” Vision Res. 36, 545–558 (1996).
  35. N. Brady, P. J. Bex, and R. E. Fredericksen, “Independent coding across spatial scales in moving fractal images,” Vision Res. 37, 1873–1883 (1997).
  36. T. Ledgeway, “How similar must the Fourier spectra of the frames of a random-dot kinematogram be to support motion perception?” Vision Res. 36, 2489–2495 (1996).
  37. A. B. Watson, “Apparent motion occurs only between similar spatial frequencies,” Vision Res. 26, 1727–1730 (1986).
  38. R. F. Hess, P. J. Bex, R. F. Fredericksen, and N. Brady, “Is human motion detection subserved by a single or multiple channel mechanism?” Vision Res. 38, 259–266 (1998).
  39. Y. D. Yang and R. Blake, “Broad tuning for spatial-frequency of neural mechanisms underlying visual-perception of coherent motion,” Nature (London) 371, 793–796 (1994).
  40. R. Over, J. Broerse, B. Crassini, and W. Lovegrove, “Spatial determinants of the aftereffect of seen movement,” Vision Res. 13, 1681–1690 (1973).
  41. E. L. Cameron, C. L. Baker, and J. C. Boulton, “Spatial frequency selective mechanisms underlying the motion aftereffect,” Vision Res. 32, 561–568 (1992).
  42. P. J. Bex, F. A. Verstraten, and I. Mareschal, “Temporal and spatial frequency tuning of the flicker motion aftereffect,” Vision Res. 36, 2721–2727 (1996).
  43. I. Mareschal, H. Ashida, P. J. Bex, S. Nishida, and F. A. J. Verstraten, “Temporal frequency tuning of the test pattern: the missing link between lower and higher stages of motion processing as revealed by the flicker motion aftereffect?” Vision Res. 37, 1755–1759 (1997).
  44. H. Ashida and N. Osaka, “Difference of spatial-frequency selectivity between static and flicker motion aftereffects,” Perception 23, 1313–1320 (1994).
  45. F. A. J. Verstraten, R. E. Fredericksen, R. J. A. van Wezel, M. J. M. Lankheet, and W. A. van de Grind, “Recovery from adaptation for dynamic and static motion aftereffects: evidence for two mechanisms,” Vision Res. 36, 421–424 (1996).
  46. S. Nishida and T. Sato, “Motion aftereffect with flickering test patterns reveals higher stages of motion processing,” Vision Res. 35, 477–490 (1995).
  47. D. J. Heeger, “Model for the extraction of image flow,” J. Opt. Soc. Am. A 4, 1455–1471 (1987).
  48. E. P. Simoncelli and D. J. Heeger, “A model of neuronal responses in visual area MT,” Vision Res. 38, 743–761 (1998).
  49. O. Braddick, “Segmentation versus integration in visual motion processing,” Trends Neurosci. 16, 263–268 (1993).
  50. J. J. Koenderink, “Optic flow,” Vision Res. 26, 161–179 (1986).
  51. J. J. Koenderink and A. J. van Doorn, “How an ambulant observer can construct a model of the environment from the geometrical structure of the visual inflow,” in Kibernetic, G. Hauske and E. Butendant, eds. (Oldenbourg, Munich, 1977).
  52. D. G. Pelli, “The VideoToolbox software for visual psychophysics: transforming numbers into movies,” Spatial Vision 10, 437–442 (1997).
  53. D. G. Pelli and L. Zhang, “Accurate control of contrast on microcomputer displays,” Vision Res. 31, 1337–1350 (1991).
  54. W. T. Newsome and E. B. Pare, “A selective impairment of motion perception following lesions of the middle temporal visual area (MT),” J. Neurosci. 8, 2201–2211 (1988).
  55. A. B. Watson and D. G. Pelli, “QUEST: a Bayesian adaptive psychometric method,” Percept. Psychophys. 33, 113–120 (1983).
  56. M. Edwards and D. R. Badcock, “Interactions of the ON and OFF pathway,” Vision Res. 34, 2849–2858 (1994).
  57. R. J. Snowden and R. Edmunds, “Colour and polarity contributions to global motion perception,” Vision Res. 39, 1813–1822 (1999).
  58. L. J. Croner and T. D. Albright, “Image segmentation enhances discrimination of motion in visual noise,” Vision Res. 37, 1415–1427 (1997).
  59. P. B. Hibbard, M. F. Bradshaw, and B. De Bruyn, “Is global motion tuned for binocular disparity?” Vision Res. 39, 961–974 (1999).
  60. R. J. Snowden and M. C. Rossiter, “Stereoscopic depth cues can segment motion information,” Perception 28, 193–201 (1999).
  61. E. H. Adelson and J. R. Bergen, “Spatiotemporal energy models for the perception of motion,” J. Opt. Soc. Am. A 2, 284–299 (1985).
  62. A. B. Watson and A. J. Ahumada, Jr., “Model of human visual-motion sensing,” J. Opt. Soc. Am. A 2, 322–342 (1985).
  63. J. P. van Santen and G. Sperling, “Elaborated Reichardt detectors,” J. Opt. Soc. Am. A 2, 300–321 (1985).
  64. M. A. Georgeson and G. D. Sullivan, “Contrast constancy: deblurring in human vision by spatial frequency channels,” J. Physiol. (London) 252, 627–656 (1975).
  65. C. Chubb and G. Sperling, “Drift-balanced random stimuli: a general basis for studying non-Fourier motion perception,” J. Opt. Soc. Am. A 5, 1986–2006 (1988).
  66. Z. Lu and G. Sperling, “The functional architecture of human visual motion perception,” Vision Res. 35, 2697–2722 (1995).
  67. S. Ullman, The Interpretation of Visual Motion (MIT Press, Cambridge, Mass., 1979).
  68. H. R. Wilson, V. P. Ferrera, and C. Yo, “A psychophysically motivated model for two-dimensional motion perception,” Visual Neurosci. 9, 79–97 (1992).
  69. P. Werkhoven, G. Sperling, and C. Chubb, “The dimensionality of texture defined motion: a single channel theory,” Vision Res. 33, 463–485 (1993).
  70. P. Cavanagh, M. Arguin, and M. von Grunau, “Interattribute apparent motion,” Vision Res. 29, 1197–1204 (1989).
  71. J. C. Boulton, and C. L. Baker, Jr., “Different parameters control motion perception above and below a critical density,” Vision Res. 33, 1803–1811 (1993).
  72. J. C. Boulton and C. L. Baker, “Dependence on stimulus onset asynchrony in apparent motion: evidence for two mechanisms,” Vision Res. 33, 2013–2019 (1993).
  73. C. L. J. Baker and R. F. Hess, “Two mechanisms underlie processing of stochastic motion stimuli,” Vision Res. 38, 1211–1222 (1998).
  74. P. J. Bex and C. L. Baker, “Motion perception over long inter-stimulus intervals,” Percept. Psychophys. 61, 1066–1074 (1999).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited