Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Plane-wave–time-domain-enhanced marching-on-in-time scheme for analyzing scattering from homogeneous dielectric structures

Not Accessible

Your library or personal account may give you access

Abstract

A novel and fast integral-equation-based scheme is presented for analyzing transient electromagnetic scattering from homogeneous, isotropic, and nondispersive bodies. The computational complexity of classical marching-on-in-time (MOT) methods for solving time-domain integral equations governing electromagnetic scattering phenomena involving homogeneous penetrable bodies scales as O(NtNs2). Here, Nt represents the number of time steps in the analysis, and Ns denotes the number of spatial degrees of freedom of the discretized electric and magnetic currents on the body’s surface. In contrast, the computational complexity of the proposed plane-wave–time-domain-enhanced MOT solver scales as O(NtNs log2 Ns). Numerical results that demonstrate the accuracy and the efficacy of the scheme are presented.

© 2002 Optical Society of America

Full Article  |  PDF Article
More Like This
Multilevel Green's function interpolation method for scattering from composite metallic and dielectric objects

Yan Shi, Hao Gang Wang, Long Li, and Chi Hou Chan
J. Opt. Soc. Am. A 25(10) 2535-2548 (2008)

Transient analysis of electromagnetic wave interactions on plasmonic nanostructures using a surface integral equation solver

Ismail E. Uysal, H. Arda Ülkü, and Hakan Bağci
J. Opt. Soc. Am. A 33(9) 1747-1759 (2016)

Transient scattering from three-dimensional arbitrarily shaped dielectric bodies

D. A. Vechinski, S. M. Rao, and T. K. Sarkar
J. Opt. Soc. Am. A 11(4) 1458-1470 (1994)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (6)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (51)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.