OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Vol. 19, Iss. 4 — Apr. 1, 2002
  • pp: 753–758

Bit-error rate for free-space adaptive optics laser communications

Robert K. Tyson  »View Author Affiliations

JOSA A, Vol. 19, Issue 4, pp. 753-758 (2002)

View Full Text Article

Acrobat PDF (176 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



An analysis of adaptive optics compensation for atmospheric-turbulence-induced scintillation is presented with the figure of merit being the laser communications bit-error rate. The formulation covers weak, moderate, and strong turbulence; on-off keying; and amplitude-shift keying, over horizontal propagation paths or on a ground-to-space uplink or downlink. The theory shows that under some circumstances the bit-error rate can be improved by a few orders of magnitude with the addition of adaptive optics to compensate for the scintillation. Low-order compensation (less than 40 Zernike modes) appears to be feasible as well as beneficial for reducing the bit-error rate and increasing the throughput of the communication link.

© 2002 Optical Society of America

OCIS Codes
(010.1080) Atmospheric and oceanic optics : Active or adaptive optics
(010.1330) Atmospheric and oceanic optics : Atmospheric turbulence
(060.4510) Fiber optics and optical communications : Optical communications

Robert K. Tyson, "Bit-error rate for free-space adaptive optics laser communications," J. Opt. Soc. Am. A 19, 753-758 (2002)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. R. M. Gagliardi and S. Karp, Optical Communications, 2nd ed. (Wiley, New York, 1995).
  2. H. T. Yura and W. G. McKinley, “Optical scintillation statistics for IR ground-to-space laser communication systems,” Appl. Opt. 22, 3353–3358 (1983).
  3. H. Ansari and L. H. Roberts, “Charge-coupled device imaging system for precision beam steering in laser communications,” Opt. Eng. 34, 3261–3264 (1995).
  4. L. C. Andrews, R. L. Phillips, and P. T. Yu, “Optical scintillations and fade statistics for a satellite-communication system,” Appl. Opt. 34, 7742–7751 (1995).
  5. L. C. Andrews, R. L. Phillips, and P. T. Yu, “Optical scintillations and fade statistics for a satellite-communication system: errata,” Appl. Opt. 36, 6068 (1997).
  6. R. L. Phillips and L. C. Andrews, “Measured statistics of laser-light scattering in atmospheric turbulence,” J. Opt. Soc. Am. 71, 1440–1445 (1981).
  7. W. B. Miller, J. C. Ricklin, and L. C. Andrews, “Effects of the refractive index spectral model on the irradiance variance of a Gaussian beam,” J. Opt. Soc. Am. A 11, 2719–2726 (1994).
  8. L. C. Andrews, R. L. Phillips, and C. Y. Hopen, “Scintillation model for a satellite communication link at large zenith angles,” Opt. Eng. 39, 3272–3280 (2000).
  9. R. K. Tyson, Principles of Adaptive Optics, 2nd ed. (Academic, Boston, Mass., 1998).
  10. J. Gourlay, T. Yang, M. Ishikawa, and A. C. Walker, “Low-order adaptive optics for free-space optoelectronic interconnects,” Appl. Opt. 39, 714–720 (2000).
  11. B. M. Levine, E. A. Martinsen, A. Wirth, A. Jankevics, M. Toledo-Quinones, F. Landers, and T. L. Bruno, “Horizontal line-of-sight turbulence over near-ground paths and implications for adaptive optics corrections in laser communications,” Appl. Opt. 37, 4553–4559 (1998).
  12. G. Parry, “Measurements of atmospheric turbulence-induced intensity fluctuations in a laser beam,” Opt. Acta 28, 715–728 (1981).
  13. R. K. Tyson, “Adaptive optics and ground-to-space laser communications,” Appl. Opt. 35, 3640–3646 (1996).
  14. A. Yariv, Optical Electronics in Modern Communications (Oxford U. Press, New York, 1997).
  15. M. Schwartz, W. R. Bennet, and S. Stein, Communications Systems and Techniques (IEEE Press, New York, 1996).
  16. J. H. Shapiro, B. A. Capron, and R. C. Harney, “Imaging and target detection with a heterodyne-reception optical radar,” Appl. Opt. 20, 3292–3313 (1981).
  17. P. Gatt, T. P. Costello, D. A. Heimmermann, D. C. Castellanos, A. R. Weeks, and C. M. Stickley, “Coherent optical array receivers for the mitigation of atmospheric turbulence and speckle effects,” Appl. Opt. 35, 5999–6009 (1996).
  18. R. J. Hill and R. G. Frehlich, “Probability distribution of irradiance for the onset of strong scintillation,” J. Opt. Soc. Am. A 14, 1530–1540 (1997).
  19. L. C. Andrews and R. L. Phillips, Laser Propagation through Random Media (SPIE Press, Bellingham, Wash., 1998).
  20. R. Barakat, “First-order intensity and log-intensity probability density functions of light scattered by the turbulent atmosphere in terms of lower-order moments,” J. Opt. Soc. Am. A 16, 2269–2274 (1999).
  21. J. H. Churnside and R. J. Hill, “Probability density of irradiance scintillations for strong path-integrated refractive turbulence,” J. Opt. Soc. Am. A 4, 723–733 (1987).
  22. L. C. Andrews, R. L. Phillips, and C. Y. Hopen, Laser Beam Scintillation with Applications (SPIE Press, Bellingham, Wash., 2001).
  23. M. Nakagami, “The m distribution—a general formula of intensity distribution of rapid fading,” in Statistical Methods in Radio Wave Propagation, W. C. Hoffman, ed. (Pergamon, New York, 1960), pp. 3–36.
  24. S. M. Flatté, C. Bracher, and G.-Yu. Wang, “Probability-density functions of irradiance for waves in atmospheric turbulence calculated by numerical simulations,” J. Opt. Soc. Am. A 11, 2080–2092 (1994).
  25. R. J. Hill, R. G. Frehlich, and W. D. Otto, “The probability distribution of irradiance scintillation,” National Oceanic and Atmospheric Administration (NOAA) Tech. Memo ERL ETL-274 (NOAA Environmental Research Laboratories, Boulder, Colo., 1996).
  26. M. A. Al-Habash, L. C. Andrews, and R. L. Phillips, “Mathematical model for the irradiance probability density function of a laser beam propagating through turbulent media,” Opt. Eng. 40, 1554–1562 (2001).
  27. W. Pratt, Laser Communications Systems (Wiley, New York, 1969), Chap. 11.
  28. J. I. Marcum, A Statistical Theory of Target Detection by Pulsed Radar: Mathematical Appendix, Research Memorandum RM-753 (The Rand Corporation, Santa Monica, Calif., 1948).
  29. D. L. Fried, “Aperture averaging of scintillation,” J. Opt. Soc. Am. 57, 169–175 (1967).
  30. J. H. Churnside, “Aperture averaging of optical scintillation in the turbulent atmosphere,” Appl. Opt. 30, 1982–1994 (1991).
  31. R. F. Lutomirski and H. T. Yura, “Aperture-averaging factor of a fluctuating light signal,” J. Opt. Soc. Am. 59, 1247–1248 (1969).
  32. R. K. Tyson, “Using the deformable mirror as a spatial filter: application to circular beams,” Appl. Opt. 21, 787–793 (1982).
  33. R. J. Sasiela and J. D. Shelton, “Transverse spectral filtering and Mellin transform techniques applied to the effect of outer scale on tilt and tilt anisoplanatism,” J. Opt. Soc. Am. A 10, 646–659 (1993).
  34. R. J. Noll, “Zernike polynomials and atmospheric turbulence,” J. Opt. Soc. Am. 66, 207–211 (1976).
  35. R. J. Sasiela, “Wave-front correction by one or more synthetic beacons,” J. Opt. Soc. Am. A 11, 379–393 (1994).
  36. R. J. Sasiela and J. D. Shelton, “Guide star system considerations,” in Adaptive Optics Engineering Handbook, R. K. Tyson, ed. (Marcel Dekker, New York, 2000), Chap. 3.
  37. V. I. Tatarskii, Wave Propagation in a Turbulent Medium (McGraw-Hill, New York, 1961), trans. by R. A. Silverman.
  38. K. E. Wilson, J. R. Lesh, K. Araki, and Y. Arimoto, “Overview of the ground-to-orbit lasercom demo,” in Free-Space laser Communication Technologies IX, G. Mecherle, ed., Proc. SPIE 2990, 23–30 (1997).
  39. H. Hemmati, K. Wilson, “Free-space optical communications at NASA,” Deep Space Communications and Naviagation Systems (DESCANSO) Symposium, Pasadena, Calif., September 21–23, 1999.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited