OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Vol. 19, Iss. 5 — May. 1, 2002
  • pp: 1013–1020

Phase and amplitude modulation of elliptic polarization states by nonabsorbing anisotropic elements: application to liquid-crystal devices

Josep Nicolás, Juan Campos, and Marı́a J. Yzuel  »View Author Affiliations


JOSA A, Vol. 19, Issue 5, pp. 1013-1020 (2002)
http://dx.doi.org/10.1364/JOSAA.19.001013


View Full Text Article

Enhanced HTML    Acrobat PDF (241 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We study the modulation of programmable birefringent devices when they are illuminated by elliptically polarized light. We apply the theory to liquid-crystal display panels (LCDs). We consider the setups at the input and the output sides of the LCD as polarization-state generators (PSGs) or detectors (PSDs). We demonstrate that once the programmable birefringent device is described by a physical model, the amplitude and phase modulation depend only on the polarization state at the input of the device and on the output state detected behind it. This permits optimization of the modulation response only in terms of the input and the output states and the physical model of the device. The procedure to find the PSG and PSD configurations is detailed by using a geometrical interpretation of the states and the plates on the Poincaré sphere.

© 2002 Optical Society of America

OCIS Codes
(120.5060) Instrumentation, measurement, and metrology : Phase modulation
(130.0250) Integrated optics : Optoelectronics
(230.3720) Optical devices : Liquid-crystal devices
(230.6120) Optical devices : Spatial light modulators

History
Original Manuscript: July 9, 2001
Revised Manuscript: September 26, 2001
Manuscript Accepted: October 11, 2001
Published: May 1, 2002

Citation
Josep Nicolás, Juan Campos, and Marı́a J. Yzuel, "Phase and amplitude modulation of elliptic polarization states by nonabsorbing anisotropic elements: application to liquid-crystal devices," J. Opt. Soc. Am. A 19, 1013-1020 (2002)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-19-5-1013


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. H. K. Liu, J. A. Davis, R. A. Lilly, “Optical data-processing properties of a liquid-crystal television spatial light modulator,” Opt. Lett. 10, 635–637 (1985). [CrossRef] [PubMed]
  2. F. T. S. Yu, S. Jutamulia, X. L. Huang, “Experimental application of low-cost liquid crystal TV to white-light optical signal processing,” Appl. Opt. 25, 3324–3326 (1986). [CrossRef] [PubMed]
  3. B. Javidi, T. Nomura, “Polarization encoding for optical security systems,” Opt. Eng. 39, 2439–2443 (2000). [CrossRef]
  4. G. Unnikrishnan, M. Pohit, K. Singh, “A polarization encoded optical encryption system using ferroelectric spatial light modulator,” Opt. Commun. 185, 25–31 (2000). [CrossRef]
  5. V. Laude, “Twisted-nematic liquid-crystal pixilated active lens,” Opt. Commun. 153, 134–152 (1998). [CrossRef]
  6. A. Márquez, C. Iemmi, J. C. Escalera, J. Campos, S. Ledesma, J. A. Davis, M. J. Yzuel, “Amplitude apodizers encoded onto Fresnel lenses implemented on a phase-only spatial light modulator,” Appl. Opt. 40, 2316–2322 (2001). [CrossRef]
  7. R. C. Jones, “A new calculus for the treatment of optical systems. Description and discussion of the calculus,” J. Opt. Soc. Am. 31, 488–493 (1941). [CrossRef]
  8. C. R. Fernández-Pousa, I. Moreno, N. Bennis, C. Gómez-Reino, “Generalized formulation and symmetry properties of reciprocal nonabsorbing polarization devices: application to liquid-crystal displays,” J. Opt. Soc. Am. A 17, 2074–2080 (2000). [CrossRef]
  9. K. Lu, B. E. A. Saleh, “Theory and design of the liquid crystal TV as an optical spatial phase modulator,” Opt. Eng. 29, 240–246 (1990). [CrossRef]
  10. J. A. Coy, M. Zaldarriaga, D. F. Grosz, O. E. Martinez, “Characterization of a liquid crystal television as a programmable spatial light modulator,” Opt. Eng. 35, 15–19 (1996). [CrossRef]
  11. A. Márquez, J. Campos, M. J. Yzuel, I. Moreno, J. A. Davis, C. Iemmi, A. Moreno, A. Robert, “Characterization of edge effects in twisted nematic liquid crystal displays,” Opt. Eng. 39, 3301–3307 (2000). [CrossRef]
  12. J. A. Davis, I. Moreno, P. Tsai, “Polarization eigenstates for twisted-nematic liquid-crystal displays,” Appl. Opt. 37, 937–945 (1998). [CrossRef]
  13. I. Moreno, J. A. Davis, K. G. D’Nelly, D. B. Allison, “Transmission and phase measurement for polarization eigenvectors in twisted-nematic liquid crystal spatial light modulators,” Opt. Eng. 37, 1–5 (1998).
  14. A. Márquez, C. Iemmi, I. Moreno, J. A. Davis, J. Campos, M. J. Yzuel, “Quantitative prediction of the modulation behavior of twisted nematic liquid crystal displays,” Opt. Eng. 40, 2558–2564 (2001). [CrossRef]
  15. H. G. Jerrard, “Transmission of light through birefringent and optically active media: the Poincaré sphere,” J. Opt. Soc. Am. 44, 634–640 (1954). [CrossRef]
  16. D. S. Sabatke, M. R. Descour, E. L. Dereniak, W. C. Sweatt, S. A. Kemme, G. S. Phipps, “Optimization of retardance for a complete Stokes polarimeter,” Opt. Lett. 25, 802–804 (2000). [CrossRef]
  17. R. M. A. Azzam, “Poincaré sphere representation of the fixed-polarizer rotating-retarder optical system,” J. Opt. Soc. Am. A 17, 2105–2107 (2000). [CrossRef]
  18. S. Huard, Polarisation de la Lumière (Masson, Paris, 1994).
  19. C. Soutar, K. Lu, “Determination of the physical properties of an arbitrary twisted-nematic liquid crystal cell,” Opt. Eng. 33, 2704–2712 (1994). [CrossRef]
  20. J. A. Davis, D. B. Allison, K. G. D’Nelly, M. L. Wilson, I. Moreno, “Ambiguities in measuring the physical parameters for twisted-nematic liquid crystal spatial light modulators,” Opt. Eng. 38, 705–709 (1999). [CrossRef]
  21. J. A. Davis, P. Tsai, K. G. D’Nelly, I. Moreno, “Simple technique for determining the extraordinary axis direction for twisted nematic liquid crystal spatial light modulators,” Opt. Eng. 38, 929–932 (1999). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited