OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Vol. 19, Iss. 6 — Jun. 1, 2002
  • pp: 1096–1106

Spatial frequency, phase, and the contrast of natural images

Peter J. Bex and Walter Makous  »View Author Affiliations


JOSA A, Vol. 19, Issue 6, pp. 1096-1106 (2002)
http://dx.doi.org/10.1364/JOSAA.19.001096


View Full Text Article

Enhanced HTML    Acrobat PDF (1046 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We examined contrast sensitivity and suprathreshold apparent contrast with natural images. The spatial-frequency components within single octaves of the images were removed (notch filtered), their phases were randomized, or the polarity of the images was inverted. Of Michelson contrast, root-mean-square (RMS) contrast, and band-limited contrast, RMS contrast was the best index of detectability. Negative images had lower apparent contrast than their positives. Contrast detection thresholds showed spatial-frequency-dependent elevation following both notch filtering and phase randomization. The peak of the spatial-frequency tuning function was approximately 0.5–2 cycles per degree (c/deg). Suprathreshold contrast matching functions also showed spatial-frequency-dependent contrast loss for both notch-filtered and phase-randomized images. The peak of the spatial-frequency tuning function was approximately 1–3 c/deg. There was no detectable difference between the effects of phase randomization and notch filtering on contrast sensitivity. We argue that these observations are consistent with changes in the activity within spatial-frequency channels caused by the higher-order phase structure of natural images that is responsible for the presence of edges and specularities.

© 2002 Optical Society of America

OCIS Codes
(330.1800) Vision, color, and visual optics : Vision - contrast sensitivity
(330.5510) Vision, color, and visual optics : Psychophysics
(330.6100) Vision, color, and visual optics : Spatial discrimination
(330.6110) Vision, color, and visual optics : Spatial filtering
(330.7310) Vision, color, and visual optics : Vision

History
Original Manuscript: September 28, 2001
Revised Manuscript: November 28, 2001
Manuscript Accepted: November 28, 2001
Published: June 1, 2002

Citation
Peter J. Bex and Walter Makous, "Spatial frequency, phase, and the contrast of natural images," J. Opt. Soc. Am. A 19, 1096-1106 (2002)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-19-6-1096


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. F. W. Campbell, J. G. Robson, “Application of Fourier analysis to the visibility of gratings,” J. Physiol. (London) 197, 551–566 (1968).
  2. F. W. Campbell, D. G. Green, “Optical and retinal factors affecting visual resolution,” J. Physiol. (London) 181, 576–593 (1965).
  3. D. H. Kelly, “Spatial frequency selectivity in the retina,” Vision Res. 15, 665–672 (1975). [CrossRef] [PubMed]
  4. J. Hoekstra, D. P. J. Van der Goot, G. Van den Brink, F. A. Bilsen, “The influence of the number of cycles upon the visual contrast threshold for spatial sine wave patterns,” Vision Res. 14, 365–368 (1974). [CrossRef] [PubMed]
  5. J. Yang, X. Qi, W. Makous, “Zero frequency masking and a model of contrast sensitivity,” Vision Res. 35, 1965–1978 (1995). [CrossRef] [PubMed]
  6. O. Bryngdahl, “Characteristics of the visual system: psychophysical measurements of the response to spatial sine-wave stimuli in the photopic region,” J. Opt. Soc. Am. 56, 811–821 (1966). [CrossRef] [PubMed]
  7. A. Watanabe, T. Mori, S. Nagata, K. Hiwatashi, “Spatial sine wave responses of the human visual system,” Vision Res. 8, 1245–1263 (1968). [CrossRef] [PubMed]
  8. C. Blakemore, J. P. J. Muncey, R. M. Ridley, “Stimulus specificity in the human visual system,” Vision Res. 13, 1915–1931 (1973). [CrossRef] [PubMed]
  9. M. A. Georgeson, G. D. Sullivan, “Contrast constancy: deblurring in human vision by spatial frequency channels,” J. Physiol. (London) 252, 627–656 (1975).
  10. J. J. Kulikowski, “Effective contrast constancy and linearity of contrast sensation,” Vision Res. 16, 1419–1431 (1976). [CrossRef] [PubMed]
  11. M. W. Cannon, “Contrast sensation: a linear function of stimulus contrast,” Vision Res. 19, 1045–1052 (1979). [CrossRef] [PubMed]
  12. D. O. Bowker, “Suprathreshold spatiotemporal response characteristics of the human visual system,” J. Opt. Soc. Am. 73, 436–440 (1983). [CrossRef] [PubMed]
  13. R. St. John, B. Timney, K. E. Armstrong, A. B. Szpak, “Changes in perceived contrast of suprathreshold gratings as a function of orientation and spatial frequency,” Spatial Vision 2, 223–232 (1987). [CrossRef]
  14. N. Brady, D. J. Field, “What’s constant in contrast constancy? The effects of scaling on the perceived contrast of bandpass patterns,” Vision Res. 35, 739–756 (1995). [CrossRef] [PubMed]
  15. A. B. Metha, P. J. Bex, W. Makous, “Contrast constancy requires discriminable spatial frequency content,” Invest. Ophthalmol. Visual Sci. 39, Suppl. S424 (1998).
  16. M. A. Georgeson, “Over the limit: Encoding contrast above threshold in human vision,” in Limits of Vision, J. J. Kulikowski, ed. (ErlbaumLondon, 1990) pp. 106–119.
  17. W. H. Swanson, H. R. Wilson, S. C. Giese, “Contrast matching data predicted from contrast increment thresholds,” Vision Res. 24, 63–75 (1984). [CrossRef] [PubMed]
  18. W. H. Swanson, M. A. Georgeson, H. R. Wilson, “Comparison of contrast responses across spatial mechanisms,” Vision Res. 28, 457–459 (1988). [CrossRef] [PubMed]
  19. E. R. Kretzmer, “Statistics of television signals,” Bell Syst. Tech. J. 31, 751–763 (1952). [CrossRef]
  20. G. J. Burton, I. R. Moorhead, “Color and spatial structure in natural scenes,” Appl. Opt. 26, 157–170 (1987). [CrossRef] [PubMed]
  21. D. J. Field, “Relations between the statistics of natural images and the response properties of cortical cells,” J. Opt. Soc. Am. A 4, 2379–2394 (1987). [CrossRef] [PubMed]
  22. J. H. van Hateren, A. van der Schaaf, “Independent component filters of natural images compared with simple cells in primary visual cortex,” Proc. R. Soc. London Ser. B 265, 359–366 (1998). [CrossRef]
  23. D. L. Ruderman, W. Bialek, “Statistics of natural images: scaling in the woods,” Phys. Rev. Lett. 73, 814–817 (1994). [CrossRef] [PubMed]
  24. D. J. Tolhurst, Y. Tadmor, T. Chao, “Amplitude spectra of natural images,” Ophthalmic Physiol. Opt. 12, 229–232 (1992). [CrossRef] [PubMed]
  25. A. van der Schaaf, J. H. van Hateren, “Modelling the power spectra of natural images: Statistics and information,” Vision Res. 36, 2759–2770 (1996). [CrossRef] [PubMed]
  26. V. A. Billock, “Neural acclimation to 1/f spatial frequency spectra in natural images transduced by the human visual system,” Physica D 137, 379–391 (2000). [CrossRef]
  27. F. Attneave, “Some informational aspects of visual perception,” Psychol. Rev. 61, 183–193 (1954). [CrossRef] [PubMed]
  28. H. B. Barlow, “Possible principles underlying the transformations of sensory messages,” in Sensory Communication, W. A. Rosenblith, ed. (MIT Press, Cambridge, Mass.1961) pp. 217–234.
  29. S. B. Laughlin, “A simple coding procedure enhances a neuron’s information capacity,” Z. Naturforsch. Teil C 36, 910–912 (1981).
  30. M. V. Srinivansan, S. B. Laughlin, A. Dubs, “Predictive coding: a fresh view of inhibition in the retina,” Proc. R. Soc. London Ser. B 216, 427–459 (1982). [CrossRef]
  31. J. H. Van Hateren, “Real and optimal neural images in early vision,” Nature 360, 68–70 (1992). [CrossRef] [PubMed]
  32. C. A. Parraga, T. Troscianko, D. J. Tolhurst, “The human visual system is optimised for processing the spatial information in natural visual images,” Curr. Biol. 10, 35–38 (2000). [CrossRef] [PubMed]
  33. D. J. Tolhurst, Y. Tadmor, “Discrimination of spectrally blended natural images: optimisation of the human visual system for encoding natural scenes,” Perception 29, 1087–1100 (2000). [CrossRef]
  34. M. G. A. Thomson, D. H. Foster, R. J. Summers, “Human sensitivity to phase perturbations in natural images: a statistical framework,” Perception 29, 1057–1069 (2000). [CrossRef]
  35. E. P. Simoncelli, B. A. Olshauser, “Natural image statistics and neural representation,” Annu. Rev. Neurosci. 24, 1193–1216 (2001). [CrossRef] [PubMed]
  36. K. Tiippana, R. Näsänen, J. Rovamo, “Contrast matching of two-dimensional compound gratings,” Vision Res. 34, 1157–1163 (1994). [CrossRef] [PubMed]
  37. B. Moulden, F. Kingdom, L. F. Gatley, “The standard deviation of luminance as a metric for contrast in random-dot images,” Perception 19, 79–101 (1990). [CrossRef] [PubMed]
  38. E. Peli, “Contrast in complex images,” J. Opt. Soc. Am. A 7, 2032–2040 (1990). [CrossRef] [PubMed]
  39. D. G. Pelli, “The Videotoolbox software for visual psychophysics: transforming numbers into movies,” Spatial Vision 10, 437–442 (1997). [CrossRef] [PubMed]
  40. D. G. Pelli, L. Zhang, “Accurate control of contrast on microcomputer displays,” Vision Res. 31, 1337–1350 (1991). [CrossRef] [PubMed]
  41. W. H. Press, A. A. Teukolsky, W. T. Vetterling, B. P. Flannery, Numerical Recipes in C, 2nd ed. (Cambridge U. Press, Cambridge, UK, 1992).
  42. A. B. Watson, D. G. Pelli, “QUEST: A Bayesian adaptive psychometric method,” Percept. Psychophys. 33, 113–120 (1983). [CrossRef] [PubMed]
  43. A. Naiman, W. Makous, “Spatial non-linearities of grayscale CRT pixels,” in Human Vision, Visual Processing, and Digital Display III, B. E. Rogowitz, ed., Proc. SPIE1666, 41–56 (1992). [CrossRef]
  44. T. Hayes, M. C. Morrone, D. C. Burr, “Recognition of positive and negative bandpass-filtered images,” Perception 15, 595–602 (1986). [CrossRef] [PubMed]
  45. C. H. Liu, A. Chaudhuri, “Are there qualitative differences between face processing in photographic positive and negative?” Perception 27, 1107–1122 (1998). [CrossRef]
  46. R. Kemp, G. Pike, P. White, A. Musselman, “Perception and recognition of normal and negative faces: the role of shape from shading and pigmentation cues,” Perception 25, 37–52 (1996). [CrossRef] [PubMed]
  47. A. Johnston, H. Hill, N. Carman, “Recognizing faces: effects of lighting direction, inversion, and brightness reversal,” Perception 21, 365–375 (1992). [CrossRef]
  48. C. Blakemore, F. W. Campbell, “On the existence of neurones in the human visual system selectively sensitive to the orientation and size of retinal images,” J. Physiol. (London) 203, 237–260 (1969).
  49. N. Graham, J. Nachmias, “Detection of grating patterns containing two spatial frequencies: A comparison of single-channel and multiple channel models,” Vision Res. 11, 251–259 (1971). [CrossRef] [PubMed]
  50. E. R. Howell, R. F. Hess, “The functional area for summation to threshold for sinusoidal gratings,” Vision Res. 18, 369–374 (1978). [CrossRef] [PubMed]
  51. M. S. Banks, W. S. Geisler, P. J. Bennett, “The physical limits of grating visibility,” Vision Res. 27, 1915–1924 (1987). [CrossRef] [PubMed]
  52. J. Mustonen, J. Rovamo, R. Näsänen, “The effects of grating area and spatial frequency on contrast sensitivity as a function of light level,” Vision Res. 33, 2065–2072 (1993). [CrossRef] [PubMed]
  53. N. Sekiguchi, D. R. Williams, D. H. Brainard , “Efficiency in detection of isoluminant and isochromatic interference fringes,” J. Opt. Soc. Am. A 10, 2118–2133 (1993). [CrossRef]
  54. J. Yang, W. Makous, “Implicit masking constrained by spatial inhomogeneities,” Vision Res. 37, 1917–1927 (1997). [CrossRef] [PubMed]
  55. A. V. Oppenheim, J. S. Lim, “The importance of phase in signals,” Proc. IEEE 69, 529–541 (1981). [CrossRef]
  56. L. N. Piotrowski, F. W. Campbell, “A demonstration of the visual importance and flexibility of spatial-frequency amplitude and phase,” Perception 11, 337–46 (1982). [CrossRef] [PubMed]
  57. J. Bretel, T. Caelli, R. Hilz, I. Rentschler, “Modelling perceptual distortion: Amplitude and phase transmission in the human visual system,” Hum. Neurobiol. 1, 61–67 (1982).
  58. R. Shapley, T. Caelli, S. Grossberg, M. J. Morgan, I. Rentschler, “Computational thories of visual perception,” in Visual Perception: The Neurophysiological Foundations, L. Spillman, J. S. Werner, eds. (Academic, New York, 1990), pp. 417–448.
  59. M. J. Morgan, J. Ross, A. Hayes, “The relative importance of local phase and local amplitude in patchwise image-reconstruction,” Biol. Cybern. 65, 113–119 (1991). [CrossRef]
  60. Y. Tadmor, D. J. Tolhurst, “Both the phase and the amplitude spectrum may determine the appearance of natural images,” Vision Res. 33, 141–145 (1993). [CrossRef] [PubMed]
  61. M. C. Morrone, D. C. Burr, “Feature detection in human vision: a phase-dependent energy model,” Proc. R. Soc. London Ser. B 235, 221–245 (1988). [CrossRef]
  62. J. Nachmias, A. Weber, “Discrimination of simple and complex gratings,” Vision Res. 15, 217–223 (1975). [CrossRef] [PubMed]
  63. D. C. Burr, “Sensitivity to spatial phase,” Vision Res. 20, 391–396 (1980). [CrossRef] [PubMed]
  64. D. R. Badcock, “Spatial phase or luminance profile discrimination?” Vision Res. 24, 613–623 (1984). [CrossRef] [PubMed]
  65. D. R. Badcock, “How do we discriminate relative spatial phase?” Vision Res. 24, 1847–1857 (1984). [CrossRef] [PubMed]
  66. M. C. Morrone, D. C. Burr, D. Spinelli, “Discrimination of spatial phase in central and peripheral vision,” Vision Res. 29, 433–445 (1989). [CrossRef] [PubMed]
  67. I. Rentschler, B. Treutwein, “Loss of spatial phase relationships in extrafoveal vision,” Nature 313, 308–310 (1985). [CrossRef] [PubMed]
  68. P. J. Bennett, M. S. Banks, “Sensitivity loss in odd-symmetric mechanisms and phase anomalies in peripheral vision,” Nature 326, 873–876 (1987). [CrossRef] [PubMed]
  69. P. J. Bex, W. Makous, “Contrast perception in natural images,” Invest. Ophthalmol. Visual Sci. Suppl. 42, S616 (2001).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited