OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Vol. 19, Iss. 6 — Jun. 1, 2002
  • pp: 1223–1233

Invariant polarimetric contrast parameters of coherent light

Philippe Réfrégier and François Goudail  »View Author Affiliations


JOSA A, Vol. 19, Issue 6, pp. 1223-1233 (2002)
http://dx.doi.org/10.1364/JOSAA.19.001223


View Full Text Article

Acrobat PDF (218 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Many applications use an active coherent illumination and analyze the variation of the polarization state of optical signals. However, as a result of the use of coherent light, these signals are generally strongly perturbed with speckle noise. This is the case, for example, for active polarimetric imaging systems that are useful for enhancing contrast between different elements in a scene. We propose a rigorous definition of the minimal set of parameters that characterize the difference between two coherent and partially polarized states. Indeed, two states of partially polarized light are a priori defined by eight parameters, for example, their two Stokes vectors. We demonstrate that the processing performance for such signal processing tasks as detection, localization, or segmentation of spatial or temporal polarization variations is uniquely determined by two scalar functions of these eight parameters. These two scalar functions are the invariant parameters that define the polarimetric contrast between two polarized states of coherent light. Different polarization configurations with the same invariant contrast parameters will necessarily lead to the same performance for a given task, which is a desirable quality for a rigorous contrast measure. The definition of these polarimetric contrast parameters simplifies the analysis and the specification of processing techniques for coherent polarimetric signals.

© 2002 Optical Society of America

OCIS Codes
(030.4280) Coherence and statistical optics : Noise in imaging systems
(030.6140) Coherence and statistical optics : Speckle
(030.6600) Coherence and statistical optics : Statistical optics
(260.5430) Physical optics : Polarization

Citation
Philippe Réfrégier and François Goudail, "Invariant polarimetric contrast parameters of coherent light," J. Opt. Soc. Am. A 19, 1223-1233 (2002)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-19-6-1223


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. M. P. Rowe, E. N. Pugh, J. S. Tyo, and N. Engheta, “Polarization-difference imaging: a biologically inspired technique for observation through scattering media,” Opt. Lett. 20, 608–610 (1995).
  2. J. S. Tyo, M. P. Rowe, E. N. Pugh, and N. Engheta, “Target detection in optical scattering media by polarization-difference imaging,” Appl. Opt. 35, 1855–1870 (1996).
  3. R. A. Chipman, “Polarization diversity active imaging,” in Image Reconstruction and Restoration II, T. J. Schulz, ed., Proc. SPIE 3170, 68–73 (1997).
  4. S. G. Demos and R. R. Alfano, “Optical polarization imaging,” Appl. Opt. 36, 150–155 (1997).
  5. M. Floc’h, G. Le Brun, C. Kieleck, J. Cariou, and J. Lotrian, “Polarimetric considerations to optimize lidar detection of immersed targets,” Pure Appl. Opt. 7, 1327–1340 (1998).
  6. P. Clémenceau, S. Breugnot, and L. Collot, “Polarization diversity imaging,” in Laser Radar Technology and Applications III, G. W. Kamerman, ed., Proc. SPIE 3380, 284–291 (1998).
  7. S. Breugnot and Ph. Clémenceau, “Modeling and performances of a polarization active imager at lambda= 806 nm,” in Laser Radar Technology and Applications IV, G. W. Kamerman and C. Werner, ed., Proc. SPIE 3707, 449–460 (1999).
  8. B. Johnson, R. Joseph, M. L. Nischan, A. Newbury, J. P. Kerekes, H. T. Barclay, B. C. Willard, and J. J. Zayhowski, “Compact active hyperspectral imaging system for the detection of concealed targets,” in Detection and Remediation Technologies for Mines and Minelike Targets IV, A. C. Dubey, J. F. Harvey, J. T. Broach, and R. E. Dugan, eds., Proc. SPIE 3710, 144–153 (1999).
  9. A. Gleckler and A. Gelbart, “Multiple-slit streak tube imaging lidar (MS-STIL) applications,” in Laser Radar Technology and Applications V, G. W. Kamerman, U. N. Singh, C. H. Werner, and V. V. Molebny, eds., Proc. SPIE 4035, 266–278 (2000).
  10. F. Goudail and Ph. Réfrégier, “Statistical techniques for target detection in polarization diversity images,” Opt. Lett. 26, 644–646 (2001).
  11. J. E. Solomon, “Polarization imaging,” Appl. Opt. 20, 1537–1544 (1981).
  12. R. Walraven, “Polarization imagery,” Opt. Eng. 20, 14–18 (1981).
  13. L. B. Wolff, “Polarization-based material classification from specular reflection,” IEEE Trans. Pattern Anal. Mach. Intell. 12, 1059–1071 (1990).
  14. W. G. Egan, W. R. Johnson, and V. S. Whitehead, “Terrestrial polarization imagery obtained from the space shuttle: characterization and interpretation,” Appl. Opt. 30, 435–442 (1991).
  15. L. B. Wolff, “Polarization camera for computer vision with a beam splitter,” J. Opt. Soc. Am. A 11, 2935–2945 (1994).
  16. J. L. Pezzaniti and R. A. Chipman, “Mueller matrix imaging polarimetry,” Opt. Eng. 34, 1558–1568 (1995).
  17. L. B. Wolff, “Polarization vision: a new sensory approach to image understanding,” Image Vision Comput. 15, 81–93 (1997).
  18. S. Lin and S. W. Lee, “Detection of specularity using stereo in color and polarization space,” Comput. Vision Image Understand. 65, 336–346 (1997).
  19. S. K. Nayar, X. S. Fang, and T. Boult, “Separation of reflection components using color and polarization,” Int. J. Comput. Vision 21, 163–186 (1997).
  20. M. H. Smith, J. D. Howe, J. B. Woodruff, M. A. Miller, and G. R. Ax, “Multispectral infrared Stokes imaging polarimeter,” in Polarization: Measurement, Analysis and Remote Sensing II, D. H. Goldstein and D. B. Chenault, eds., Proc. SPIE 3754, 137–143 (1999).
  21. J. Q. Peterson, G. L. Jensen, M. E. Greenman, and J. Kristl, “Calibration of the hyperspectral imaging polarimeter,” in Polarization: Measurement, Analysis and Remote Sensing II, D. H. Goldstein and D. B. Chenault, ed., Proc. SPIE 3754, 296–307 (1999).
  22. Y. Y. Schechner, J. Shamir, and N. Kiryati, “Polarization and statistical analysis of scenes containing a semireflector,” J. Opt. Soc. Am. A 17, 276–284 (2000).
  23. J. W. Goodman, “Laser speckle and related phenomena,” in Statistical Properties of Laser Speckle Patterns, Vol. 9 of Topics in Applied Physics (Springer-Verlag, Heidelberg, 1975), pp. 9–75.
  24. T. S. Ferguson, Mathematical Statistics, a Decision Theoretic Approach (Academic, New York, 1967).
  25. C. G. Giri, Group Invariance in Statistical Inference (World Scientific, Singapore, 1996).
  26. A. O. Hero and C. Guillouet, “Robust detection of SAR/IR targets via invariance,” in Proceedings of the IEEE International Conference on Image Processing (Institute of Electrical and Electronics Engineers, New York, 1997), Vol. 3, pp. 472–475.
  27. D. P. Huttenlocher and W. J. Rucklidge, “A multi-resolution technique for comparing images using the Hausdorff dis- tance,” Tech. Rep. 1321 (Department of Computer Science, Cornell University, Ithaca, N.Y., 1992).
  28. J. W. Goodman, “The speckle effect in coherent imaging,” in Statistical Optics (Wiley, New York, 1985), pp. 347–356.
  29. S. Huard, “Polarized optical wave,” in Polarization of Light (Wiley, Masson, Paris, 1997), pp. 1–35.
  30. P. Pellat-Finet, “Geometrical approach to polarization optics—I: Geometrical structure of polarized light,” Optik (Stuttgart) 87, 27–33 (1991).
  31. P. Pellat-Finet, “Geometrical approach to polarization optics—II: Quaternionic representation of polarized light,” Optik (Stuttgart) 87, 68–76 (1991).
  32. S. Huard, “Propagation of states of polarization in optical devices,” in Polarization of Light (Wiley, Paris, 1997), pp. 86–130.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited