OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Vol. 19, Iss. 7 — Jul. 1, 2002
  • pp: 1286–1296

Statistical-information-based performance criteria for Richardson–Lucy image deblurring

Sudhakar Prasad  »View Author Affiliations


JOSA A, Vol. 19, Issue 7, pp. 1286-1296 (2002)
http://dx.doi.org/10.1364/JOSAA.19.001286


View Full Text Article

Enhanced HTML    Acrobat PDF (647 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Iterative image deconvolution algorithms generally lack objective criteria for deciding when to terminate iterations, often relying on ad hoc metrics for determining optimal performance. A statistical-information-based analysis of the popular Richardson–Lucy iterative deblurring algorithm is presented after clarification of the detailed nature of noise amplification and resolution recovery as the algorithm iterates. Monitoring the information content of the reconstructed image furnishes an alternative criterion for assessing and stopping such an iterative algorithm. It is straightforward to implement prior knowledge and other conditioning tools in this statistical approach.

© 2002 Optical Society of America

OCIS Codes
(100.1830) Image processing : Deconvolution
(100.2000) Image processing : Digital image processing
(100.3020) Image processing : Image reconstruction-restoration

History
Original Manuscript: June 18, 2001
Revised Manuscript: February 28, 2002
Manuscript Accepted: February 28, 2002
Published: July 1, 2002

Citation
Sudhakar Prasad, "Statistical-information-based performance criteria for Richardson–Lucy image deblurring," J. Opt. Soc. Am. A 19, 1286-1296 (2002)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-19-7-1286


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. H. C. Andrews, B. R. Hunt, Digital Image Restoration (Prentice-Hall, Englewood Cliffs, N.J., 1977).
  2. W. K. Pratt, Digital Image Processing, 2nd ed. (Wiley, New York, 1991).
  3. R. L. Lagendijk, J. Biemond, Iterative Identification and Restoration of Images (Kluwer, Norwell, Mass., 1991).
  4. M. C. Roggemann, B. Welsh, Imaging through Turbulence (CRC, Boca Raton, Fla., 1996).
  5. E. S. Meinel, “Origins of linear and nonlinear recursive restoration algorithms,” J. Opt. Soc. Am. A 3, 787–799 (1986). [CrossRef]
  6. A. S. Carasso, “Linear and nonlinear image deblurring: a documented study,” SIAM J. Numer. Anal. 36, 1659–1689 (1999). [CrossRef]
  7. B. R. Hunt, “Prospects for image restoration,” Int. J. Mod. Phys. C 5, 151–178 (1994). [CrossRef]
  8. B. R. Hunt, “Superresolution of images: algorithms, principles, performance,” Int. J. Imaging Syst. Technol. 6, 297–304 (1995). [CrossRef]
  9. D. G. Sheppard, B. R. Hunt, M. W. Marcellin, “Iterative multiframe superresolution algorithms for atmospheric-turbulence-degraded imagery,” J. Opt. Soc. Am. A 15, 978–992 (1998). [CrossRef]
  10. W. H. Richardson, “Bayesian-based iterative method of image restoration,” J. Opt. Soc. Am. 62, 55–59 (1972). [CrossRef]
  11. L. B. Lucy, “An iterative technique for the rectification of observed distributions,” Astron. J. 79, 745–754 (1974). [CrossRef]
  12. D. L. Snyder, M. I. Miller, L. J. Thomas, D. G. Politte, “Noise and edge artifacts in maximum-likelihood reconstructions for emission tomography,” IEEE Trans. Med. Imaging 6, 228–238 (1987). [CrossRef] [PubMed]
  13. D. L. Snyder, M. I. Miller, “The use of sieves to stabilize images produced with the EM algorithm for emission tomography,” IEEE Trans. Nucl. Sci. NS-32, 3864–3872 (1985). [CrossRef]
  14. D. L. Snyder, M. I. Miller, Random Point Processes in Time and Space, 2nd ed. (Springer-Verlag, New York, 1991).
  15. H. J. Trussell, “Convergence criteria of iterative restoration methods,” IEEE Trans. Acoust. Speech Signal Process. ASSP-31, 129–136 (1983). [CrossRef]
  16. J. Llacer, E. Veklerov, “Feasible images and practical stopping rules for iterative algorithms in emission tomography,” IEEE Trans. Med. Imaging 8, 186–193 (1989). [CrossRef]
  17. J. Llacer, “On the validity of hypothesis testing for feasibility of image reconstruction,” IEEE Trans. Med. Imaging 9, 226–230 (1990). [CrossRef]
  18. S. J. Reeves, “Generalized cross-validation as a stopping rule for the Richardson–Lucy algorithm,” Int. J. Imaging Syst. Technol. 6, 387–391 (1995). [CrossRef]
  19. P. B. Fellgett, E. H. Linfoot, “On the assessment of optical images,” Philos. Trans. R. Soc. (London) A 247, 369–407 (1955). [CrossRef]
  20. C. L. Fales, F. O. Huck, “An information theory of image gathering,” Inf. Sci. (New York) 57, 245–285 (1991).
  21. F. O. Huck, C. L. Fales, Z. Rahman, “An information theory of visual communication,” Philos. Trans. R. Soc. London Ser. A 354, 2193–2248 (1996). [CrossRef]
  22. S. Prasad, “Information capacity of a seeing-limited imaging system,” Opt. Commun. 177, 119–134 (2000). [CrossRef]
  23. S. Prasad, “Information theoretic perspective on the formation, detection and processing of images from a seeing limited telescope,” in Proceedings of the AMOS Technical Conference (Maui Economic Development Board, Maui, HI, 1999), pp. 339–349.
  24. J. A. O’Sullivan, R. E. Blahut, D. L. Snyder, “Information-theoretic image formation,” IEEE Trans. Inf. Theory 44, 2094–2123 (1998). [CrossRef]
  25. C. Shannon, “A mathematical theory of communication,” Bell Syst. Tech. J. 27, 379–423, 623–656 (1948). [CrossRef]
  26. B. R. Frieden, “Restoring with maximum likelihood and maximum entropy,” J. Opt. Soc. Am. 62, 511–518 (1972). [CrossRef] [PubMed]
  27. S. P. Luttrell, “The use of transinformation in the design of data sampling schemes for inverse problems,” Inverse Probl. 1, 199–218 (1985). [CrossRef]
  28. Y. Vardi, D. Lee, “From image deblurring to optimal investments: maximum likelihood solutions for positive linear inverse problems,” J. R. Statist. Soc. B 55, 569–612 (1993).
  29. D. L. Snyder, T. J. Schulz, J. A. O’Sullivan, “Deblurring subject to nonnegativity constraints,” IEEE Trans. Signal Process. 40, 1143–1150 (1992). [CrossRef]
  30. See, e.g., T. J. Holmes, “Maximum likelihood image restoration adapted for incoherent optical imaging,” J. Opt. Soc. Am. A 5, 666–673 (1988). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited