OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Vol. 19, Iss. 8 — Aug. 1, 2002
  • pp: 1680–1688

Laguerre-Gauss and Bessel-Gauss beams in uniaxial crystals

Gabriella Cincotti, Alessandro Ciattoni, and Claudio Palma  »View Author Affiliations


JOSA A, Vol. 19, Issue 8, pp. 1680-1688 (2002)
http://dx.doi.org/10.1364/JOSAA.19.001680


View Full Text Article

Acrobat PDF (841 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A simple correspondence between the paraxial propagation formulas along the optical axis of a uniaxial crystal and inside an isotropic medium is found in the case of beams with linearly polarized circularly symmetric boundary distributions. The electric fields of the ordinary and the extraordinary beams are related to the corresponding expressions in a medium with refractive index no and ne2/no, where no and ne are the ordinary and the extraordinary refractive indexes, respectively. Closed-form expressions for Laguerre–Gauss and Bessel–Gauss beams propagating through an anisotropic crystal are given.

© 2002 Optical Society of America

OCIS Codes
(260.1180) Physical optics : Crystal optics
(260.1960) Physical optics : Diffraction theory

Citation
Gabriella Cincotti, Alessandro Ciattoni, and Claudio Palma, "Laguerre-Gauss and Bessel-Gauss beams in uniaxial crystals," J. Opt. Soc. Am. A 19, 1680-1688 (2002)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-19-8-1680


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. A. Ciattoni, G. Cincotti, and C. Palma, “Propagation of cylindrically symmetric fields in uniaxial crystals,” J. Opt. Soc. Am. A 19, 792–796 (2002).
  2. A. E. Siegman, Lasers (University Science, Mill Valley, Calif., 1986).
  3. M. Harris, C. A. Hill, and J. M. Vaughan, “Optical helices and spiral-interference-fringes,” Opt. Commun. 106, 161–166 (1994).
  4. R. Oron, N. Davidson, A. A. Friesem, and E. Hasman, “Efficient formation of pure helical laser beams,” Opt. Commun. 182, 205–208 (2000).
  5. R. Meucci, A. Labate, and M. Ciofini, “Polarization properties of low-order Laguerre–Gauss modes in a CO2 laser,” Quantum Semiclassic. Opt. 9, L31–L35 (1997).
  6. A. A. Tovar, “Production and propagation of cylindrically polarized Laguerre–Gaussian laser beams,” J. Opt. Soc. Am. A 15, 2705–2711 (1998).
  7. C. Tamm and C. O. Weiss, “Bistability and optical switching of spatial patterns in a laser,” J. Opt. Soc. Am. B 7, 1034–1038 (1990).
  8. M. W. Beijersbergen, L. Allen, H. E. L. O. van der Veen, and J. P. Woerdman, “Astigmatic laser mode converters and transfer of orbital angular momentum,” Opt. Commun. 96, 123–132 (1993).
  9. S. C. Tidwell, G. H. Kim, and W. D. Kimura, “Efficient radially polarized laser beam generation with a double interferometer,” Appl. Opt. 32, 5222–5229 (1993).
  10. S. C. Tidwell, D. H. Ford, and W. D. Kimura, “Generating radially polarized beams interferometrically,” Appl. Opt. 29, 2234–2239 (1990).
  11. J. Arlt, R. Kuhn, and K. Dholakia, “Spatial transformation of Laguerre–Gaussian laser modes,” J. Mod. Opt. 48, 783–787 (2001).
  12. J. Arlt, K. Dholakia, L. Allen, and M. J. Padgett, “The production of multiringed Laguerre–Gaussian modes by computer-generated holograms,” J. Mod. Opt. 45, 1231–1237 (1998).
  13. N. R. Heckenberg, R. McDuff, C. P. Smith, H. Rubinsztein-Dunlop, and M. J. Wegener, “Laser-beams with phase singularities,” Opt. Quantum Electron. 24, S951–S962 (1992).
  14. M. W. Beijersbergen, R. P. C. Coerwinkel, M. Kristensen, and J. P. Woerdman, “Helical-wave-front laser beams produced with a spiral phaseplate,” Opt. Commun. 112, 321–327 (1994).
  15. M. J. Padgett and L. Allen, “The Poynting vector in Laguerre–Gaussian laser modes,” Opt. Commun. 121, 36–40 (1995).
  16. M. Babiker, W. L. Power, and L. Allen, “Light-induced torque on moving atoms,” Phys. Rev. Lett. 73, 1239–1242 (1994).
  17. L. Allen, M. Babiker, and W. L. Power, “Azimuthal doppler-shift in laser beams with orbital angular-momentum,” Opt. Commun. 112, 141–144 (1994).
  18. N. B. Simpson, L. Allen, and M. J. Padgett, “Optical tweezers and optical spanners with Laguerre–Gaussian modes,” J. Mod. Opt. 43, 2485–2491 (1996).
  19. R. Borghi, F. Gori, and M. Santarsiero, “Optimization of Laguerre–Gauss truncated series,” Opt. Commun. 125, 197–203 (1996).
  20. F. Gori, G. Guattari, and C. Padovani, “Bessel–Gauss beams,” Opt. Commun. 64, 491–495 (1987).
  21. J. E. Durnin, “Exact solutions for nondiffracting beams,” J. Opt. Soc. Am. A 4, 651–653 (1987).
  22. J. E. Durnin, J. J. Miceli, and J. H. Eberly, “Diffraction-free beams,” Phys. Rev. Lett. 54, 1499–1501 (1987).
  23. B. Lu and W. Huang, “Three-dimensional intensity distribution of focused Bessel–Gauss beams,” J. Mod. Opt. 43, 509–515 (1996).
  24. B. Lu and W. Huang, “Focal shift in unaperturated Bessel–Gauss beams,” Opt. Commun. 109, 43–46 (1994).
  25. R. Borghi and M. Santarsiero, “M2 factor of Bessel–Gauss beams,” Opt. Lett. 22, 262–264 (1997).
  26. V. Bagini, F. Frezza, M. Santarsiero, G. Schettini, and G. Schirripa Spagnolo, “Generalized Bessel–Gauss beams,” J. Mod. Opt. 43, 1155–1166 (1996).
  27. C. Palma, G. Cincotti, G. Guattari, and M. Santarsiero, “Imaging of generalized Bessel–Gauss beams,” J. Mod. Opt. 43, 2269–2277 (1996).
  28. M. Santarsiero, “Propagation of generalized Bessel–Gauss beams through ABCD optical systems,” Opt. Commun. 132, 1–7 (1996).
  29. S. Ruschin, “Modified Bessel nondiffracting beams,” J. Opt. Soc. Am. A 11, 3224–3228 (1994).
  30. R. M. Herman and T. A. Wiggins, “Bessel-like beams modulated by arbitrary radial functions,” J. Opt. Soc. Am. A 17, 1021–1032 (2000).
  31. J. Turunen, A. Vasara, and A. T. Friberg, “Holographic gen-eration of diffraction-free beams,” Appl. Opt. 27, 3959–3962 (1988).
  32. R. H. Jordan and G. D. Hall, “Free-space azimuthal paraxial wave equation: the azimuthal Bessel–Gauss beam solution,” Opt. Lett. 19, 427–429 (1994).
  33. P. L. Greene and D. G. Hall, “Diffraction characteristics of the azimuthal Bessel–Gauss beam,” J. Opt. Soc. Am. A 13, 962–966 (1996).
  34. P. L. Greene and D. G. Hall, “Properties and diffraction of vector Bessel–Gauss beam,” J. Opt. Soc. Am. A 15, 3020–3027 (1998).
  35. R. H. Jordan, G. D. Hall, O. King, G. Wicks, and S. Rishton, “Lasing behavior of circular grating surface-emitting semiconductor lasers,” J. Opt. Soc. Am. B 14, 449–453 (1997).
  36. A. A. Tovar and G. H. Clark, “Concentric-circle-grating, surface-emitting laser beam propagation in complex optical systems,” J. Opt. Soc. Am. A 14, 3333–3340 (1997).
  37. C. Olson, P. L. Greene, G. W. Wicks, D. G. Hall, and S. Rishton, “High-order azimuthal spatial modes of concentric-circle-grating surface-emitting semiconductor laser,” Appl. Phys. Lett. 72, 1284–1268 (1998).
  38. S. Chavez-Cerda, E. Tepichin, M. A. Meneses-Nava, and G. Ramirez, “Experimental observation of interfering Bessel beams” Opt. Express 13, 524–529 (1998).
  39. S. Chavez-Cerda, M. A. Meneses-Nava, and J. M. Hicknann, “Interference of travelling nondiffracting beams,” Opt. Lett. 23, 1871–1873 (1998).
  40. A. P. Prudnikov, Yu. A. Brychkov, and O. I. Marichev, Integrals and Series (Gordon & Breach Science, New York, 1986), Vol. 2, p. 223, formula 2.12.39.3.
  41. M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions (Dover, New York, 1970).
  42. See, for example, J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, New York, 1968).
  43. G. Cincotti, A. Ciattoni, and C. Palma, “Hermite–Gauss beams in uniaxially anisotropic crystals,” IEEE J. Quantum Electron. 37, 1517–1524 (2002).
  44. S. Saghafi and C. J. R. Sheppard, “Near field and far field of elegant Hermite–Gaussian and Laguerre–Gaussian modes,” J. Mod. Opt. 45, 1999–2009 (1998).
  45. See Ref. 40, p. 51, formula 1.14.1.8.
  46. See Ref. 40, p. 659, formula 5.7.5.1.
  47. I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series, and Products, 5th ed. (Academic, San Diego, Calif., 1994), p. 1001, formula 8.578.1.
  48. J. Turunen, A. Vasara, and A. T. Friberg, “Propagation invariance and self-imaging in variable-coherence optics,” J. Opt. Soc. Am. A 8, 282–289 (1991).
  49. Z. Bouchal, R. Horak, and J. Wagner, “Propagation-invariant electromagnetic fields: theory and experiment,” J. Mod. Opt. 43, 1905–1920 (1996).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited