OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Vol. 20, Iss. 4 — Apr. 1, 2003
  • pp: 678–685

Definition of the diffusion coefficient in scattering and absorbing media

Rachid Elaloufi, Rémi Carminati, and Jean-Jacques Greffet  »View Author Affiliations

JOSA A, Vol. 20, Issue 4, pp. 678-685 (2003)

View Full Text Article

Acrobat PDF (197 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We revisit the definition of the diffusion coefficient for light transport in scattering and absorbing media. From an asymptotic analysis of the transport equation, we present a novel derivation of the diffusion coefficient, which is restricted neither to low absorption nor to a situation in which the specific intensity is quasi-isotropic. Our result agrees with previous expressions of the diffusion coefficient in the appropriate limit. Using numerical simulations, we discuss the implications of the proper choice of the diffusion coefficient for time-dependent transport.

© 2003 Optical Society of America

OCIS Codes
(170.3660) Medical optics and biotechnology : Light propagation in tissues
(170.5280) Medical optics and biotechnology : Photon migration
(290.1990) Scattering : Diffusion
(290.4210) Scattering : Multiple scattering
(290.7050) Scattering : Turbid media

Rachid Elaloufi, Rémi Carminati, and Jean-Jacques Greffet, "Definition of the diffusion coefficient in scattering and absorbing media," J. Opt. Soc. Am. A 20, 678-685 (2003)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. A. Yodh and B. Chance, “Spectroscopy and imaging with diffusing light,” Phys. Today 48, 34–40 (1995).
  2. S. K. Gayen and R. R. Alfano, “Biomedical imaging techniques,” Opt. Photon. News, July 1996, pp. 17–22.
  3. A. Mandelis, “Diffusion waves and their uses,” Phys. Today 53, 29–34 (2000).
  4. P. Sebbah, ed., Waves and Imaging through Complex Media (Kluwer Academic, Dordrecht, The Netherlands 2001).
  5. S. Chandrasekhar, Radiative Transfer (Dover, New York, 1960).
  6. K. M. Case and P. F. Zweifel, Linear Transport Theory (Addison-Wesley, Reading, Mass., 1967).
  7. A. Ishimaru, Wave Propagation and Scattering in Random Media (IEEE Press, Piscataway, N.J. 1997).
  8. R. Aronson and N. Corngold, “Photon diffusion coefficient in an absorbing medium,” J. Opt. Soc. Am. A 16, 1066–1071 (1999).
  9. K. Furutsu and Y. Yamada, “Diffusion approximation for a dissipative random medium and the applications,” Phys. Rev. E 50, 3634–3640 (1994).
  10. M. Bassani, F. Martelli, G. Zaccanti, and D. Contini, “Independence of the diffusion coefficient from absorption: experimental and numerical evidence,” Opt. Lett. 22, 853–855 (1997).
  11. T. Durduran, A. G. Yodh, B. Chance, and D. A. Boas, “Does the photon-diffusion coefficient depend on absorption?” J. Opt. Soc. Am. A 14, 3358–3365 (1997).
  12. D. J. Durian, “The diffusion coefficient depends on absorption,” Opt. Lett. 23, 1502–1504 (1998).
  13. R. Graaff and J. J. Ten Bosch, “Diffusion coefficient in photon diffusion theory,” Opt. Lett. 25, 43–45 (2000).
  14. G. E. Thomas and K. Stamnes, Radiative Transfer in the Atmosphere and Ocean (Cambridge U. Press, Cambridge, UK, 1999), Chap. 8.
  15. A. Lagendijk and B. A. van Tiggelen, “Resonant multiple scattering of light,” Phys. Rep. 270, 143 (1996).
  16. F. Liu, K. M. Yoo, and R. R. Alfano, “Transmitted photon intensity through biological tissues within various time windows,” Opt. Lett. 19, 740–742 (1994).
  17. D. J. Pine, D. A. Weitz, P. M. Chaikin, and E. Herbolzheimer, “Diffusive-wave spectroscopy,” Phys. Rev. Lett. 60, 1134–1137 (1988).
  18. D. A. Boas, L. E. Campbell, and A. G. Yodh, “Scattering and imaging with diffusing temporal field correlations,” Phys. Rev. Lett. 75, 1855–1858 (1995).
  19. K. K. Bizheva, A. M. Siegel, and D. A. Boas, “Path-length resolved dynamic light scattering in highly scattering random media: the transition to diffusing wave spectroscopy,” Phys. Rev. E 58, 7664–7667 (1998).
  20. R. Elaloufi, R. Carminati, and J.-J. Greffet, “Time-dependent transport through scattering media: from radiative transfer to diffusion,” J. Opt. A Pure Appl. Opt. 4, S103–S108 (2002).
  21. M. Lax, V. Nayaranamurti, and R. C. Fulton, “Classical diffusive photon transport in a slab,” in Proceedings of the Symposium on Laser Optics of Condensed Matter, J. L. Birman, H. Z. Cummins, and A. A. Kaplyanskii, eds. (Plenum, New York, 1987), pp. 229–235.
  22. R. Aronson, “Boundary conditions for diffusion of light,” J. Opt. Soc. Am. A 12, 2532–2539 (1995).
  23. M. P. van Albada, B. A. van Tiggelen, A. Lagendijk, and A. Tip, “Speed of propagation of classical waves in strongly scattering media,” Phys. Rev. Lett. 66, 3132–3135 (1991).
  24. B. A. van Tiggelen, A. Lagendijk, M. P. van Albada, and A. Tip, “Speed of light in random media,” Phys. Rev. B 45, 12233–12243 (1992).
  25. Y. Kuga, A. Ishimaru, and D. Rice, “Velocity of coherent and incoherent electromagnetic waves in a dense strongly scattering medium,” Phys. Rev. B 48, 13155–13158 (1993).
  26. H. P. Schriemer, M. L. Cowan, J. H. Page, P. Sheng, Z. Liu, and D. A. Weitz, “Energy velocity of diffusing waves in strongly scattering media,” Phys. Rev. Lett. 79, 3166–3169 (1997).
  27. R. H. J. Kop, P. de Vries, R. Sprik, and A. Lagendijk, “Observation of anomalous transport of strongly multiple scattered light in thin disordered slabs,” Phys. Rev. Lett. 79, 4369–4372 (1997).
  28. D. J. Durian and J. Rudnick, “Photon migration at short times and distances and in case of strong absorption,” J. Opt. Soc. Am. A 14, 235–245 (1997).
  29. A. D. Kim and A. Ishimaru, “Optical diffusion of continuous wave, pulsed, and density waves in scattering media and comparisons with radiative transfer,” Appl. Opt. 37, 5313–5319 (1998).
  30. J. D. Jackson, Classical Electrodynamics (Wiley, New York, 1975), p. 90.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited