OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Vol. 20, Iss. 4 — Apr. 1, 2003
  • pp: 698–706

Virtual optical experiments. Part I. Modeling the measurement process

Robert Thalhammer and Gerhard Wachutka  »View Author Affiliations

JOSA A, Vol. 20, Issue 4, pp. 698-706 (2003)

View Full Text Article

Enhanced HTML    Acrobat PDF (379 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



In recent years, internal laser probing techniques that exploit the electro-optical and the thermo-optical effects have been introduced. Space-resolved and time-resolved measurements of charge-carrier and temperature distributions in the interior of semiconductor samples have thus become possible. For a profound analysis and the optimization of these measurement techniques, a physically rigorous model for simulating the entire measurement process is presented. The model includes the electrothermal device simulation of the sample’s operating condition, the calculation of the resulting refractive-index modulations, the simulation of wave propagation through the device under test, the imaging lenses and aperture holes, and the simulation of the detector response. As an essential part of this model, a numerically efficient algorithm for simulating wave propagation in large computational domains has been developed. The decisive step is introduction of a suitably chosen set of computational variables that allows a significantly coarser discretization width without loss of accuracy.

© 2003 Optical Society of America

OCIS Codes
(120.3180) Instrumentation, measurement, and metrology : Interferometry
(120.4290) Instrumentation, measurement, and metrology : Nondestructive testing
(120.4570) Instrumentation, measurement, and metrology : Optical design of instruments
(290.3030) Scattering : Index measurements
(350.5500) Other areas of optics : Propagation
(350.7420) Other areas of optics : Waves

Original Manuscript: June 25, 2002
Revised Manuscript: October 30, 2002
Manuscript Accepted: October 30, 2002
Published: April 1, 2003

Robert Thalhammer and Gerhard Wachutka, "Virtual optical experiments. Part I. Modeling the measurement process," J. Opt. Soc. Am. A 20, 698-706 (2003)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. G Deboy, “Charakterisierung von Leistungshalbleitern durch Interne Laserdeflektion,” Ph.D. thesis (Technische Universität München, Munich, Germany, 1996).
  2. N Seliger, P Habaš, E. Gornik, “Time-domain characterization of lattice heating in power VDMOSFETs by means of an interferometric laserprobe technique,” in Proceedings of European Solid State Device Research Conference, G. Baccarani, M. Rudan, eds. (Editions Frontières, Gif-sur-Yvette, France, 1996), pp. 847–850.
  3. N. Seliger, P. Habaš, E. Gornik, “A study of backside laser-probe signals in MOSFETs,” Microelectron. Eng. 31, 87–94 (1996). [CrossRef]
  4. R. Thalhammer, G. Wachutka, “Virtual optical experiments. Part II. Design of experiments,” J. Opt. Soc. Am. A 20, 707–713 (2003). [CrossRef]
  5. H. B. Briggs, R. C. Fletcher, “Absorption of infrared light by free carriers in germanium,” Phys. Rev. 91, 1342–1346 (1953). [CrossRef]
  6. N. J. Harrick, “Use of infrared absorption to determine carrier distribution in germanium and surface recombination velocity,” Phys. Rev. 101, 491 (1956). [CrossRef]
  7. G Schierwater, “Untersuchung der optischen Absorption an freien Ladungsträgern und der Rekombinationsstrahl-ung am Elektron-Loch-Plasma von pin-Dioden,” Ph.D. thesis (Technische Universität Berlin, Berlin, 1975).
  8. D. E. Houston, S Krishna, E. D. Wolley, “Study of charge dynamics in high speed power devices using free carrier absorption measurement,” in Technical Digest of International Electronic Devices Meeting (Institute of Electrical and Electronics Engineers, New York, 1976), pp. 504–507.
  9. R. W. Cooper, D. H. Paxman, “Measurement of charge carrier behavior in pin diodes using a laser technique,” Solid State Electron. 21, 865–869 (1978). [CrossRef]
  10. W Görtz, “Ein Beitrag zur Bestimmung des Ladungsträgerverhaltens in psn-Dioden im Fall starker Injektion unter Verwendung der Absorptions-Messmethode,” Ph.D. thesis (Rheinisch-Westfälische Technische Hochschule Aachen, Aachen, Germany, 1984).
  11. H. Bleichner, E. Nordlander, M. Rosling, S. Berg, “A time-resolved optical system for spatial characterization of the carrier distribution in a gate-turn-off thyristor (GTO),” IEEE Trans. Instrum. Meas. 39, 473–478 (1990). [CrossRef]
  12. D. Fournier, C. Boccara, A. Skumanich, N. M. Amer, “Photothermal investigation of transport in semiconductors: theory and experiment,” J. Appl. Phys. 59, 787–795 (1986). [CrossRef]
  13. G. Deboy, G. Sölkner, E. Wolfgang, W. Claeys, “Absolute measurement of transient carrier concentration and temperature gradients in power semiconductor devices by internal IR-laser deflection,” Microelectron. Eng. 31, 299–307 (1996). [CrossRef]
  14. G. Wachutka, “Rigorous thermodynamic treatment of heat generation and conduction in semiconductor device modeling,” IEEE Trans. Comput. Aided Des. 9, 1141–1149 (1990). [CrossRef]
  15. R Escoffier, U Krumbein, E Lyumkis, B Polsky, A Schenk, B Schmithüsen, C. Steiner, W. Fichtner, DESSIS 4.0 Manual (ISE Integrated Systems Engineering, Zurich, Switzerland, 1996).
  16. A Schenk, Advanced Physical Models for Silicon Device Simulation (Springer, Vienna, 1998).
  17. N Seliger, “Characterization of semiconductor devices by laser interferometry,” Ph.D. thesis (Vienna University of Technology, Vienna, 1998).
  18. T. B. Koch, “Computation of wave propagation in integrated optical devices,” Ph.D. thesis (University College, London, 1989).
  19. C Hafner, “Beiträge zur Berechnung der Ausbreitung elektromagnetischer Wellen in zylindrischen Strukturen mit Hilfe des ‘Point Matching Verfahrens,’ ” Ph.D. thesis (Eidgenössische Technische Hochschule Zürich, Zurich, Switzerland, 1980).
  20. C Hafner, The Generalized Multipole Technique for Computational Electromagnetics (Artech House, Norwood, Mass., 1990).
  21. T. O. Körner, Rigorous Simulation of Light Propagation in Semiconductor Devices, Vol. 81 of Series in Microelectronics (Hartung-Gorre, Konstanz, Germany, 1999).
  22. K. S. Yee, “Numerical simulation of initial boundary value problems involving Maxwell’s equations in isotropic media,” IEEE Trans. Antennas Propag. 14, 302–307 (1966). [CrossRef]
  23. J. W. Thomas, Numerical Partial Differential Equations:Finite Difference Methods, Vol. 22 of Texts in Applied Mathematics (Springer, Berlin, 1995).
  24. P. E. Lagasse, R. Baets, “Application of propagating beam methods to electromagnetic and acoustic wave propagation problems: a review,” Radio Sci. 22, 1225–1233 (1987). [CrossRef]
  25. M Niederhoff, “Feldberechnung in Hochleistungslaserdioden,” Ph.D. thesis (Technische Universität München, Munich, Germany, 1996).
  26. M. D. Feit, J. A. Fleck, “Light propagation in graded-index optical fibers,” Appl. Opt. 17, 3990–3998 (1978). [CrossRef] [PubMed]
  27. J. V. Roey, J. van der Donk, P. E. Lagasse, “Beam-propagation method: analysis and assessment,” J. Opt. Soc. Am. 71, 803–810 (1981). [CrossRef]
  28. R. Z. Yahel, I. Last, “Numerical simulation of laser beam propagation in three-dimensional random media: beam splitting and patch formation,” Waves Random Media 2, 81–98 (1992). [CrossRef]
  29. C. B. Burckhardt, “Diffraction of a plane wave at a sinusoidally stratified dielectric grating,” J. Opt. Soc. Am. 56, 1502–1509 (1966). [CrossRef]
  30. C.-M. Yuan, A. J. Strojwas, “Modeling optical microscope images of integrated-circuit structures,” J. Opt. Soc. Am. A 8, 778–790 (1991). [CrossRef]
  31. R Petit, Electromagnetic Theory of Gratings (Springer, Berlin, 1980).
  32. M. S. Yeung, “Modeling high numerical aperture optical lithography,” in Optical/Laser Microlithography, B. J. Lin, ed., Proc. SPIE922, 149–167 (1988). [CrossRef]
  33. H. Kirchauer, S. Selberherr, “Rigorous three-dimensional photoresist exposure and development simula-tion over nonplanar topography,” IEEE Trans. Comput.-Aided Design 16, 1431–1438 (1997). [CrossRef]
  34. T. G. Moore, J. G. Blaschak, A. Taflove, G. A. Kriegsmann, “Theory and application of radiation boundary operators,” IEEE Trans. Antennas Propag. 36, 1797–1812 (1988). [CrossRef]
  35. E Hecht, A Zajac, Optics (Addison-Wesley, Reading, Mass., 1974).
  36. J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, New York, 1968).
  37. G. Cocorullo, F. G. D. Corte, M. Iodice, I. Rendina, P. M. Sarro, “A temperature all-silicon micro-sensor based on the thermo-optic effect,” IEEE Trans. Electron Devices 44, 766–774 (1997). [CrossRef]
  38. G. Cocorullo, F. G. D. Corte, I. Rendina, P. M. Sarro, “Thermo-optic effect exploitation in silicon microstructures,” Sens. Actuators A 71, 19–26 (1998). [CrossRef]
  39. T. Liu, G. F. Fernando, Z. Y. Zhang, K. T. V. Grattan, “Simultaneous strain and temperature measurements in composites using extrinsic Fabry–Perot interferometric and intrinsic rare-earth doped fiber sensors,” Sens. Actuators A 80, 208–215 (2000). [CrossRef]
  40. R Thalhammer, F Hille, P Scheubert, G Wachutka, “Physically rigorous modeling of sensing techniques exploiting the thermo-optical and electro-optical effect,” in Proceedings of International Conference on Modeling of Microsystems, Applied Computational Research Society, ed. (Computational Publications, Cambridge, Mass., 1999), pp. 683–686.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited