OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Vol. 20, Iss. 5 — May. 1, 2003
  • pp: 876–889

State-estimation approach to the nonstationary optical tomography problem

Ville Kolehmainen, Simon Prince, Simon R. Arridge, and Jari P. Kaipio  »View Author Affiliations


JOSA A, Vol. 20, Issue 5, pp. 876-889 (2003)
http://dx.doi.org/10.1364/JOSAA.20.000876


View Full Text Article

Enhanced HTML    Acrobat PDF (430 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We propose a new numerical approach to the nonstationary optical (diffusion) tomography (OT) problem. The assumption in the method is that the absorption and/or diffusion coefficients are nonstationary in the sense that they may exhibit significant changes during the time that is needed to measure data for one traditional image frame. In the proposed method, the OT problem is formulated as a state-estimation problem. Within the state-estimation formulation, the absorption and/or diffusion coefficients are considered a stochastic process. The objective is to estimate a sequence of states for the process when the state evolution model for the process, the observation model for OT experiments, and data on the exterior boundary are given. In the proposed method, the state estimates are computed by using Kalman filtering techniques. The performance of the proposed method is evaluated on the basis of synthetic data. The simulations also illustrate that further improvements to the results in nonstationary applications can be obtained by adjustment of the measurement protocol.

© 2003 Optical Society of America

OCIS Codes
(100.3190) Image processing : Inverse problems
(170.3010) Medical optics and biotechnology : Image reconstruction techniques
(170.6960) Medical optics and biotechnology : Tomography

History
Original Manuscript: June 28, 2002
Revised Manuscript: December 3, 2002
Manuscript Accepted: December 3, 2002
Published: May 1, 2003

Citation
Ville Kolehmainen, Simon Prince, Simon R. Arridge, and Jari P. Kaipio, "State-estimation approach to the nonstationary optical tomography problem," J. Opt. Soc. Am. A 20, 876-889 (2003)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-20-5-876


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. Cutler, “Transillumination as an aid in the diagnosis of breast lesions,” Surg. Gynecol. Obstet. 48, 721–729 (1929).
  2. J. J. Jöbsis, “Noninvasive infrared monitoring of cerebral and myocardial oxygen sufficiency and circulatory parameters,” Science 198, 1264–1267 (1977). [CrossRef]
  3. G. Jarry, S. Ghesquiere, J. M. Maarek, S. Debray, Bui-Mong-Hung, D. Laurent, “Imaging mammalian tissues and organs using laser collimated transillumination,” J. Biomed. Eng. 6, 70–74 (1984). [CrossRef] [PubMed]
  4. S. R. Arridge, “The forward and inverse problems in time-resolved infrared imaging,” in Medical Optical Tomography: Functional Imaging and Monitoring, G. J. Mueller, B. Chance, R. R. Alfano, S. R. Arridge, J. Beuthan, E. Gratton, M. Kaschke, B. R. Masters, S. Svanberg, P. van der Zee, eds., Vol. IS11 of SPIE, Institute Series (Society of Photo-Optical Instrumentation Engineers, Bellingham, Wash., 1993), pp. 35–64.
  5. A. Yodh, B. Chance, “Spectroscopy and imaging with diffusing light,” Phys. Today 48, 38–40 (1995). [CrossRef]
  6. J. C. Hebden, S. R. Arridge, D. T. Delpy, “Optical imaging in medicine: I. Experimental techniques,” Phys. Med. Biol. 42, 825–840 (1997). [CrossRef] [PubMed]
  7. S. R. Arridge, J. C. Hebden, “Optical imaging in medicine: II. Modelling and reconstruction,” Phys. Med. Biol. 42, 841–853 (1997). [CrossRef] [PubMed]
  8. S. R. Arridge, “Optical tomography in medical imaging,” Inverse Probl. 15, R41–R93 (1999). [CrossRef]
  9. D. Hawysz, E. M. Sevick-Muraca, “Developments towards diagnostic breast cancer imaging using near-infrared optical measurements and fluorescent contrast agents,” Neoplasia 2, 388–417 (2000). [CrossRef]
  10. D. A. Boas, D. H. Brooks, E. L. Miller, C. A. DiMarzio, M. Kilmer, R. J. Gaudette, Q. Zhang, “Imaging the body with diffuse optical tomography,” IEEE Signal Process. Mag. 18, 57–75 (2001). [CrossRef]
  11. S. Fantini, M. A. Franceschini, G. Gaida, E. Gratton, H. Jess, W. W. Mantulin, K. T. Moesta, P. M. Schlag, M. Kaschke, “Frequency-domain optical mammography: edge effect corrections,” Med. Phys. 23, 149–157 (1996). [CrossRef] [PubMed]
  12. K. T. Moesta, S. Fantini, H. Jess, S. Totkas, M. A. Franceschini, M. Kaschke, P. M. Schlag, “Contrast features ofbreast cancer in frequency-domain laser scanning mammography,” J. Biomed. Opt. 3, 129–136 (1998). [CrossRef] [PubMed]
  13. H. Jess, H. Erdl, K. T. Moesta, S. Fantini, M. A. Franceschini, E. Gratton, “Intensity modulated breast imaging: technology and clinical pilot study results,” in Advances in Optical Imaging and Photon Migration, R. R. Alfano, J. G. Fujimoto, eds., Vol. 2 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1996), pp. 126–129.
  14. S. R. Arridge, M. Schweiger, “A general framework for iterative reconstruction algorithms in optical tomography, using a finite element method,” in Computational Radiology and Imaging: Therapy and Diagnosis, C. Borgers, F. Natteres, eds., Vol. 110 of IMA Volumes in Mathematics and Its Applications (Springer-Verlag, Berlin, 1998), pp. 45–70. [CrossRef]
  15. J. P. van Houten, D. A. Benaron, S. Splilman, D. K. Stevenson, “Imaging brain injury using time-resolved near infrared light scanning,” Pediatr. Res. 39, 470–476 (1996). [CrossRef] [PubMed]
  16. J. S. Wyatt, M. Cope, D. T. Delpy, C. E. Richardson, A. D. Edwards, S. C. Wray, E. O. R. Reynolds, “Quantitation of cerebral blood volume in newborn infants by near infrared spectroscopy,” J. Appl. Physiol. 68, 1086–1091 (1990).
  17. A. Villringer, B. Chance, “Non-invasive optical spectroscopy and imaging of human brain function,” Trends Neurosci. 20, 435–442 (1997). [CrossRef] [PubMed]
  18. C. Hirth, H. Obrig, K. Villringer, A. Thiel, J. Bernarding, W. Muhhlnickel, H. Flor, U. Dirnagl, A. Villringer, “Non-invasive functional mapping of the human motor cortex using near-infrared spectroscopy,” Neuro. Report 7, 1977–1981 (1996).
  19. R. Wenzel, H. Obrig, J. Ruben, K. Villringer, A. Thiel, J. Bernarding, U. Dirnagl, A. Villringer, “Cerebral blood oxygenation changes induced by visual stimulation humans,” J. Biomed. Opt. 1, 399–404 (1996). [CrossRef] [PubMed]
  20. K. R. Heereken, H. Obrig, R. Wenzel, K. Eberle, J. Ruben, K. Villringer, R. Kurth, A. Villringer, “Cerebral haemoglobin oxygenation during sustained visual stimulation—a near-infrared spectroscopy study,” Philos. Trans. R. Soc. London Ser. B 352, 743–750 (1997). [CrossRef]
  21. A. Kienle, L. Lilge, M. S. Patterson, R. Hibst, R. Steiner, B. C. Wilson, “Spatially resolved absolute diffusive reflectance measurements for noninvasive determination of the optical scattering and absorption coefficients of biological tissue,” Appl. Opt. 35, 2304–2314 (1996). [CrossRef] [PubMed]
  22. M. Kohl, R. Watson, M. Cope, “Determination of absorption-coefficients in highly scattering media from changes in attenuation and phase,” Opt. Lett. 21, 1519–1521 (1996). [CrossRef] [PubMed]
  23. B. Chance, J. S. Leigh, H. Miyake, D. S. Smith, S. Nioka, R. Greenfield, M. Finander, K. Kaufman, W. Levy, M. Young, P. Cohne, H. Yoshioka, R. Boretsky, “Comparison of time-resolved and unresolved measurements of deoxyhemoglobin in brain,” Proc. Natl. Acad. Sci. USA 85, 4971–4975 (1988). [CrossRef]
  24. R. A. Williams, M. S. Beck, eds., Process Tomography, Principles, Techniques and Applications (Butterworth-Heinemann, Oxford, UK, 1995).
  25. H. Jiang, K. D. Paulsen, U. L. Osterberg, B. W. Pogue, M. S. Patterson, “Optical image reconstruction using frequency-domain data: simulations and experiments,” J. Opt. Soc. Am. A 13, 253–266 (1995). [CrossRef]
  26. A. H. Hielscher, A. D. Klose, K. M. Hanson, “Gradient-based iterative image reconstruction scheme for time-resolved optical tomography,” IEEE Trans. Med. Imaging 18, 262–271 (1999). [CrossRef] [PubMed]
  27. J. C. Ye, K. J. Webb, C. A. Bouman, R. P. Millane, “Optical diffusion tomography by iterative coordinate-descent optimization in a Bayesian framework,” J. Opt. Soc. Am. A 16, 2400–2412 (1999). [CrossRef]
  28. R. J. Gaudette, D. H. Brooks, C. A. DiMarzio, M. E. Kilmer, E. L. Miller, T. Gaudette, D. A. Boas, “A comparison study of linear reconstruction techniques for diffuse optical tomographic imaging of absorption coefficient,” Phys. Med. Biol. 45, 1051–1070 (2000). [CrossRef] [PubMed]
  29. J. Chang, H. L. Graber, R. L. Barbour, R. Aronson, “Recovery of optical cross-section perturbations in dense-scattering media by transport theory based imaging operators and steady state simulated data,” Appl. Opt. 35, 3963–3978 (1996). [CrossRef] [PubMed]
  30. B. B. Das, J. Dolne, R. L. Barbour, H. L. Graber, J. Chang, M. Zevallos, F. Liu, R. R. Alfano, “Analysis of time-resolved data for tomographical image reconstruction of opaque phantoms and finite absorbers in diffusive media,” in Optical Tomography, Photon Migration, and Spectroscopy of Tissue and Model Media: Theory, Human Studies, and Instrumentation, B. Chance, R. R. Alfano, eds., Proc. SPIE2389, 16–28 (1995). [CrossRef]
  31. M. A. O’Leary, D. A. Boas, B. Chance, A. G. Yodh, “Experimental images of heterogeneous turbid media by frequency-domain diffusing-photon tomography,” Opt. Lett. 20, 426–428 (1995). [CrossRef] [PubMed]
  32. J. Chang, H. L. Graber, P. C. Koo, R. Aronson, S. S. Barbour, R. L. Barbour, “Optical imaging of anatomical maps derived from magnetic resonance images using time-independent optical sources,” IEEE Trans. Med. Imaging 16, 68–77 (1997). [CrossRef] [PubMed]
  33. K. D. Paulsen, H. Jiang, “Enhanced frequency-domain optical image reconstruction in tissues through total variation minimization,” Appl. Opt. 35, 3447–3458 (1996). [CrossRef] [PubMed]
  34. M. Schweiger, S. R. Arridge, “Application of temporal filters to time resolved data in optical tomography,” Phys. Med. Biol. 44, 1699–1717 (1999). [CrossRef] [PubMed]
  35. V. Kolehmainen, M. Vauhkonen, J. P. Kaipio, S. R. Arridge, “Recovery of piecewise constant coefficients in optical diffusion tomography,” Opt. Express7, 468–480 (2000); http://www.opticsexpress.org . [CrossRef] [PubMed]
  36. A. V. Bluestone, G. Abdoulaev, C. H. Schmitz, R. L. Barbour, A. H. Hielscher, “Three-dimensional optical tomography of hemodynamics in the human head,” Opt. Express9, 272–286 (2001); http://www.opticsexpress.org . [CrossRef] [PubMed]
  37. C. H. Schmitz, H. L. Graber, H. Lou, I. Arif, J. Ira, Y. Pei, A. Bluestone, S. Zhong, R. Andronica, I. Soller, N. Ramirez, D.-L. S. Barbour, R. L. Barbour, “Instrumentation and calibration protocol for imaging dynamic features in dense-scattering media by optical tomography,” Appl. Opt. 39, 6466–6485 (2000). [CrossRef]
  38. J. P. Kaipio, E. Somersalo, “Nonstationary inverse problems and state estimation,” J. Inverse Ill-Posed Probl. 7, 273–282 (1999). [CrossRef]
  39. A. Seppänen, M. Vauhkonen, P. J. Vauhkonen, E. Somersalo, J. P. Kaipio, “State estimation with fluid dynamical evolution models in process tomography—an application to impedance tomography,” Inverse Probl. 17, 467–484 (2001). [CrossRef]
  40. V. Kolehmainen, A. Voutilainen, J. P. Kaipio, “Estimation of non-stationary region boundaries in EIT—state estimation approach,” Inverse Probl. 17, 1937–1956 (2001). [CrossRef]
  41. M. J. Eppstein, D. E. Dougherty, T. L. Troy, E. M. Sevick-Muraca, “Biomedical optical tomography using dynamic parameterization and Bayesian conditioning on photon migration measurements,” Appl. Opt. 38, 2138–2150 (1999). [CrossRef]
  42. M. J. Eppstein, D. E. Dougherty, D. J. Hawysz, E. M. Sevick-Muraca, “Three-dimensional Bayesian optical image reconstruction with domain decomposition,” IEEE Trans. Med. Imaging 20, 147–163 (2001). [CrossRef] [PubMed]
  43. S. R. Arridge, M. Schweiger, M. Hiraoka, D. T. Delpy, “A finite element approach for modeling photon transport in tissue,” Med. Phys. 20, 299–309 (1993). [CrossRef] [PubMed]
  44. J. P. Kaltenbach, M. Kaschke, “Frequency- and time-domain modelling of light transport in random media,” in Medical Optical Tomography: Functional Imaging and Monitoring, G. J. Mueller, B. Chance, R. R. Alfano, S. R. Arridge, J. Beuthan, E. Gratton, M. Kaschke, B. R. Masters, S. Svanberg, P. van der Zee, eds., Vol. IS11 of SPIE Institute Series (Society at Photo-Optical Instrumentation Engineers, Bellingham, Wash., 1993), pp. 65–86.
  45. M. C. Case, P. F. Zweifel, Linear Transport Theory (Addison-Wesley, New York, 1967).
  46. O. Dorn, “A transport–backtransport method for optical tomography,” Inverse Probl. 14, 1107–1130 (1998). [CrossRef]
  47. M. Schweiger, S. R. Arridge, M. Hiraoka, D. T. Delpy, “The finite element model for the propagation of light in scattering media: boundary and source conditions,” Med. Phys. 22, 1779–1792 (1995). [CrossRef] [PubMed]
  48. A. Ishimaru, Wave Propagation and Scattering in Random Media (Academic, New York, 1978), Vol. 1.
  49. R. Aronson, “Boundary conditions for diffusion of light,” J. Opt. Soc. Am. A 12, 2532–2539 (1995). [CrossRef]
  50. F. Martelli, D. Contini, A. Taddeucci, G. Zaccanti, “Photon migration through a turbid slab described by a model based on diffusion approximation. 2. Comparison with Monte Carlo results,” Appl. Opt. 36, 4600–4612 (1997). [CrossRef] [PubMed]
  51. A. H. Hielscher, R. E. Alcouffe, R. L. Barbour, “Comparison of finite difference transport and diffusion calculations for photon migration in homogeneous and heterogeneous tissues,” Phys. Med. Biol. 43, 1285–1302 (1998). [CrossRef] [PubMed]
  52. S. R. Arridge, H. Dehghani, M. Schweiger, E. Okada, “The finite element model for the propagation of light in scattering media: a direct method for domains with non-scattering regions,” Med. Phys. 27, 252–264 (2000). [CrossRef] [PubMed]
  53. V. Kolehmainen, “Novel approaches to image reconstruction in diffusion tomography,” Ph.D. thesis (University of Kuopio, Kuopio, Finland, 2001); http://venda.uku.fi/~vkolehma/ .
  54. S. R. Arridge, W. R. B. Lionheart, “Non-uniqueness in diffusion-based optical tomography,” Opt. Lett. 23, 882–884 (1998). [CrossRef]
  55. B. W. Pogue, T. O. McBride, J. Prewitt, U. L. Östeberg, K. D. Paulsen, “Spatially variant regularization improves diffuse optical tomography,” Appl. Opt. 38, 2950–2960 (1999). [CrossRef]
  56. R. E. Kalman, R. S. Bucy, “New results in linear filter ing and prediction theory,” Trans. ASME J. Basic Eng. 83, 95–108 (1961). [CrossRef]
  57. J. L. Melsa, D. L. Cohn, Decision and Estimation Theory (McGraw-Hill, New York, 1978).
  58. C. K. Chui, G. Chen, Kalman Filtering with Practical Applications (Springer-Verlag, Berlin, 1987).
  59. B. D. O. Anderson, J. B. Moore, Optimal Filtering (Prentice-Hall, Englewood Cliffs, N.J., 1979).
  60. H. W. Sorenson, ed., Kalman Filtering: Theory and Applications (IEEE Press, Piscataway, N.J., 1985).
  61. A. Gelb, ed., Applied Optimal Estimation (MIT Press, Cambridge, Mass., 1974).
  62. A. Seppänen, M. Vauhkonen, E. Somersalo, J. P. Kaipio, “State space models in process tomography—approximation of state noise covariance,” Inverse Probl. Eng. 9, 561–585 (2001). [CrossRef]
  63. S. R. Arridge, M. Hiraoka, M. Schweiger, “Statistical basis for the determination of optical pathlength in tissue,” Phys. Med. Biol. 40, 1539–1558 (1995). [CrossRef] [PubMed]
  64. M. Cheney, D. Isaacson, J. C. Newell, S. Simske, J. Goble, “NOSER: an algorithm for solving the inverse conductivity problem,” Int. J. Imaging Syst. Technol. 2, 66–75 (1990). [CrossRef]
  65. J. E. Brazy, D. V. Lewis, M. H. Mitnick, F. F. Jöbsis van der Vliet, “Noninvasive monitoring of cerebral oxygenation in preterm infants: preliminary observations,” Pediatrics 75, 217–225 (1985). [PubMed]
  66. D. T. Delpy, M. Cope, “Quantitation in tissue near infra-red spectroscopy,” Philos. Trans. R. Soc. London Ser. B 352, 649–659 (1997). [CrossRef]
  67. S. R. Arridge, M. Hiraoka, M. Schweiger, “Modeling of noise for near-infrared transillumination imaging,” in Optical Tomography, Photon Migration, and Spectroscopy of Tissue and Model Media: Theory, Human Studies, and Instrumentation, B. Chance, R. R. Alfano, eds., Proc. SPIE2389, 389–399 (1995). [CrossRef]
  68. J. P. Kaipio, V. Kolehmainen, E. Somersalo, M. Vauhkonen, “Statistical inversion and Monte Carlo sampling methods in electrical impedance tomography,” Inverse Probl. 16, 1487–1522 (2000). [CrossRef]
  69. S. R. Arridge, “Photon measurement density functions. Part 1: analytical forms,” Appl. Opt. 34, 7395–7409 (1995). [CrossRef] [PubMed]
  70. S. R. Arridge, J. C. Hebden, M. Schweiger, F. E. W. Schmidt, M. E. Fry, E. M. C. Hillman, H. Dehghani, D. T. Delby, “A method for three-dimensional time-resolved optical tomography,” Int. J. Imaging Syst. Technol. 11, 2–11 (2000). [CrossRef]
  71. F. E. W. Schmidt, J. C. Hebden, E. M. C. Hillman, M. E. Fry, M. Schweiger, H. Dehghani, D. T. Delpy, S. R. Arridge, “Multiple-slice imaging of a tissue-equivalent phantom by use of time-resolved optical tomography,” Appl. Opt. 39, 3380–3387 (2000). [CrossRef]
  72. J. Riley, M. Schweiger, S. R. Arridge, J. Ripoll, M. Nieto-Vesperinas, “3D optical tomography in the presence of void regions,” Opt. Express7, 462–467 (2000); http://www.opticsexpress.org . [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited