OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Vol. 20, Iss. 7 — Jul. 1, 2003
  • pp: 1210–1222

Transmission electron microscopy of weakly scattering objects described by operator algebra

Ardan Patwardhan  »View Author Affiliations

JOSA A, Vol. 20, Issue 7, pp. 1210-1222 (2003)

View Full Text Article

Enhanced HTML    Acrobat PDF (282 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



An operator algebra description of Fourier optics is used to examine the imaging properties of transmission electron microscopy when applied to the study of weak specimens. Effects due to the curvature of the incident beam, the finite extent of the source, beam tilt, and objective aperture shift are examined. An expression for the contrast transfer function is derived that can account for either beam tilt in conjunction with a centered aperture or a shifted aperture in conjunction with an aligned beam. It shows that high phase contrast over a broad spatial-frequency range can be achieved by laterally shifting the objective aperture rather than defocusing the specimen, as is normally done.

© 2003 Optical Society of America

OCIS Codes
(110.0180) Imaging systems : Microscopy
(110.4850) Imaging systems : Optical transfer functions
(110.4980) Imaging systems : Partial coherence in imaging
(120.5050) Instrumentation, measurement, and metrology : Phase measurement

Original Manuscript: August 19, 2002
Revised Manuscript: February 3, 2003
Manuscript Accepted: February 3, 2003
Published: July 1, 2003

Ardan Patwardhan, "Transmission electron microscopy of weakly scattering objects described by operator algebra," J. Opt. Soc. Am. A 20, 1210-1222 (2003)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. Frank, P. Penczek, R. K. Agrawal, R. A. Grassucci, A. B. Heagle, “Three-dimensional cryoelectron microscopy of ribosomes.,” Methods Enzymol. 317, 276–291 (2000). [CrossRef]
  2. M. van Heel, B. Gowen, R. Matadeen, E. Orlova, R. Finn, T. Pape, D. Cohen, H. Stark, R. Schmidt, M. Schatz, A. Patwardhan, “Single-particle electron cryomicroscopy: towards atomic resolution,” Quart. Rev. Biophys. 33, 307–369 (2000). [CrossRef]
  3. P. W. Hawkes, E. Kasper, Principles of Electron Optics: Wave Optics (Academic, London, 1994), Vol. 3.
  4. L. Reimer, Transmission Electron Microscopy: Physics of Image Formation and Microanalysis (Springer-Verlag, New York, 1997).
  5. K.-J. Hanzen, “The optical transfer theory of the electron microscope: fundamental principles and applications,” Adv. Opt. Electron Microsc. 4, 1–84 (1971).
  6. O. Scherzer, “The theoretical resolution limit of the electron microscope,” J. Appl. Phys. 20, 20–29 (1949). [CrossRef]
  7. W. Coene, D. Van Dyck, J. Van Landuyt, “An extension of the standard theory of partial coherence for the effect of beam convergence in high resolution electron microscopy,” Optik 73, 13–18 (1986).
  8. J. Frank, “The envelope of electron microscopic transfer functions for partially coherent illumination,” Optik 38, 519–536 (1973).
  9. C. J. Humphreys, J. C. H. Spence, “Resolution and illumination coherence in electron microscopy,” Optik 58, 125–144 (1981).
  10. R. H. Wade, J. Frank, “Electron microscope transfer functions for partially coherent axial illumination and chromatic defocus spread,” Optik 49, 81–92 (1977).
  11. P. W. Hawkes, “Electron microscope transfer functions in closed form with tilted illumination,” Optik 55, 207–212 (1980).
  12. S. C. McFarlane, “The imaging of amorphous specimens in a tilted-beam electron microscope,” J. Phys. C 8, 2819–2836 (1975). [CrossRef]
  13. R. H. Wade, “Concerning tilted beam electron microscope transfer functions,” Optik 45, 87–91 (1976).
  14. R. H. Wade, W. K. Jenkins, “Tilted beam electron microscopy: the effective coherent aperture,” Optik 50, 1–17 (1978).
  15. F. Zemlin, K. Weiss, P. Schiske, W. Kunath, K.-H. Herrmann, “Coma-free alignment of high resolution electron microscopes with the aid of optical diffractograms,” Ultramicroscopy 3, 49–60 (1978). [CrossRef]
  16. A. Patwardhan, “Coherent non-planar illumination of a defocused specimen: consequences for transmission electron microscopy,” Optik 113, 4–12 (2002). [CrossRef]
  17. J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, Singapore, 1996).
  18. H. J. Butterweck, “General theory of linear, coherent optical data-processing systems,” J. Opt. Soc. Am. 67, 60–70 (1977). [CrossRef]
  19. H. J. Butterweck, “Principles of optical data processing,” in Progress in Optics, E. Wolf, ed. (North Holland, Amsterdam, 1981), pp. 213–280.
  20. V. P. Ivanchenkov, P. V. Orlov, “Operator description of optical computation systems with a partially coherent light source,” Avtometriya 5, 63–70 (1985).
  21. M. Nazarathy, J. Shamir, “Fourier optics described by operator algebra,” J. Opt. Soc. Am. 70, 150–159 (1980). [CrossRef]
  22. M. Nazarathy, J. Shamir, “Holography described by operator algebra,” J. Opt. Soc. Am. 71, 529–541 (1981). [CrossRef]
  23. J. Shamir, Optical Systems and Processes (SPIE Press, Bellingham, Wash., 1999).
  24. D. A. Tichenor, J. W. Goodman, “Coherent transfer function,” J. Opt. Soc. Am. 62, 293–295 (1972). [CrossRef]
  25. D. L. Misell, “On the validity of the weak-phase and other approximations in the analysis of electron microscope images,” J. Phys. D 9(13), 1849–1866 (1976). [CrossRef]
  26. A. Patwardhan, “Verification of intensity expressions using Maple” (2002), retrieved http://www.cbem.ic.ac.uk/ardan/opalg/opalg1.html .
  27. W. O. Saxton, Computer Techniques for Image Processing in Electron Microscopy (Academic, New York, 1978).
  28. O. Bryngdahl, A. Lohmann, “Single-sideband holography,” J. Opt. Soc. Am. 58, 620–624 (1968). [CrossRef]
  29. K. H. Downing, B. M. Siegel, “Phase shift determination in single-sideband holography,” Optik 38, 21–28 (1973).
  30. J. W. Goodman, Statistical Optics (Wiley, New York, 2000), Sec. 7.2.1, pp. 303–304.
  31. M. Born, E. Wolf, Principles of Optics (Cambridge U. Press, Cambridge, UK, 1999).
  32. S. Uhlemann, M. Haider, “Residual wave aberrations in the first spherical aberration corrected transmission electron microscope,” Ultramicroscopy 72, 109–119 (1998). [CrossRef]
  33. P. W. Hawkes, “The dependence of the spherical aberration coefficient of an electron-optical objective lens on object position and magnification,” Br. J. Appl. Phys. 1, 131–133 (1968).
  34. A. Patwardhan, “Verification of aberration terms using Maple” (2002), retrieved http://www.cbem.ic.ac.uk/ardan/opalg/opalg3.html .
  35. A. Patwardhan, “Maple worksheet for the numerical integration of contrast transfer functions” (2002), retrieved http://www.cbem.ic.ac.uk/ardan/opalg/opalg2.mws .
  36. M. Haider, H. Rose, S. Uhlemann, E. Schwan, B. Kabius, K. Urban, “A spherical-aberration-corrected 200 kV transmission electron microscope,” Ultramicroscopy 75, 53–60 (1998). [CrossRef]
  37. D. B. Williams, C. B. Carter, Transmission Electron Microscopy: a Textbook for Materials Science (Plenum, New York, 1996), Sec. 9, p. 133.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited