OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Vol. 20, Iss. 7 — Jul. 1, 2003
  • pp: 1321–1330

Recovery from contrast adaptation matches ideal-observer predictions

H. P. Snippe and J. H. van Hateren  »View Author Affiliations

JOSA A, Vol. 20, Issue 7, pp. 1321-1330 (2003)

View Full Text Article

Enhanced HTML    Acrobat PDF (188 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Recovery from contrast adaptation was studied in psychophysical experiments. We measured detection thresholds for a test pulse presented on a photopic background as a function of the time after the offset of a high-contrast flicker of the background. The decrease of thresholds with time is well described by a power-law function. Thresholds for tests presented at 640 ms after the offset of the background contrast are still significantly elevated above the threshold measured when the observers have completely adapted to a steady background. We compare the psychophysical data with contrast estimates of ideal-observer models. A match between the results for human and ideal observers can be obtained when the ideal observer is limited by noise. For a quantitative match, we assume that the ideal observer performs a Bayesian calculation on its noise-perturbed input, sampled every 10–20 ms. For the Bayesian calculation we assume a prior probability distribution function for the input contrast that has a lower cutoff at the standard deviation of the noise.

© 2003 Optical Society of America

OCIS Codes
(330.4060) Vision, color, and visual optics : Vision modeling
(330.7320) Vision, color, and visual optics : Vision adaptation

Original Manuscript: September 23, 2002
Revised Manuscript: February 10, 2003
Manuscript Accepted: February 10, 2003
Published: July 1, 2003

H. P. Snippe and J. H. van Hateren, "Recovery from contrast adaptation matches ideal-observer predictions," J. Opt. Soc. Am. A 20, 1321-1330 (2003)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. M. Smirnakis, M. J. Berry, D. K. Warland, W. Bialek, M. Meister, “Adaptation of retinal processing to image contrast and spatial scale,” Nature 386, 69–73 (1997). [CrossRef] [PubMed]
  2. J. D. Victor, M. M. Conte, K. P. Purpura, “Dynamic shifts of the contrast-response function,” Visual Neurosci. 14, 577–587 (1997). [CrossRef]
  3. S. P. Brown, R. H. Masland, “Spatial scale and cellular substrate of contrast adaptation by retinal ganglion cells,” Nature Neurosci. 4, 44–51 (2001). [CrossRef] [PubMed]
  4. D. Chander, E. J. Chichilnisky, “Adaptation to temporal contrast in primate and salamander retina,” J. Neurosci. 21, 9904–9916 (2001). [PubMed]
  5. K. J. Kim, F. Rieke, “Temporal contrast adaptation inthe input and output signals of salamander retinal ganglion cells,” J. Neurosci. 21, 287–299 (2001). [PubMed]
  6. F. Rieke, “Temporal contrast adaptation in salamander bipolar cells,” J. Neurosci. 21, 9445–9454 (2001). [PubMed]
  7. D. G. Albrecht, W. S. Geisler, R. A. Frazor, A. M. Crane, “Visual cortex of monkey and cats: temporal dynamics of the contrast response function,” J. Neurophysiol. 88, 888–913 (2002). [PubMed]
  8. C. A. Burbeck, D. H. Kelly, “Contrast gain measurements and the transient/sustained dichotomy,” J. Opt. Soc. Am. 71, 1335–1342 (1981). [PubMed]
  9. S. Magnussen, M. W. Greenlee, “Marathon adaptation to spatial contrast: saturation in sight,” Vision Res. 25, 1409–1411 (1985). [CrossRef] [PubMed]
  10. J. M. Foley, G. M. Boynton, “Forward pattern masking and adaptation: effects of duration, interstimulus interval, contrast, and spatial and temporal frequency,” Vision Res. 33, 959–980 (1993). [CrossRef] [PubMed]
  11. M. W. Greenlee, M. A. Georgeson, S. Magnussen, J. P. Harris, “The time course of adaptation to spatial contrast,” Vision Res. 31, 223–236 (1991). [CrossRef] [PubMed]
  12. M. DeWeese, A. Zador, “Asymmetric dynamics in optimal variance adaptation,” Neural Comput. 10, 1179–1202 (1998). [CrossRef]
  13. L. Poot, H. P. Snippe, J. H. van Hateren, “Dynamics of adaptation at high luminances: adaptation is faster after luminance decrements than after luminance increments,” J. Opt. Soc. Am. A 14, 2499–2508 (1997). [CrossRef]
  14. H. P. Snippe, L. Poot, J. H. van Hateren, “A temporal model for early vision that explains detection thresholds for light pulses on flickering backgrounds,” Visual Neurosci. 17, 449–462 (2000). [CrossRef]
  15. F. Rieke, D. K. Warland, R. R. de Ruyter van Steveninck, W. Bialek, Spikes: Exploring the Neural Code (MIT Press, Cambridge, Mass., 1996).
  16. D. G. Albrecht, W. S. Geisler, “Motion selectivity and the contrast-response function of simple cells in the visual cortex,” Visual Neurosci. 7, 531–546 (1991). [CrossRef]
  17. O. Schwartz, E. P. Simoncelli, “Natural signal statistics and sensory gain control,” Nat. Neurosci. 4, 819–825 (2001). [CrossRef] [PubMed]
  18. L. Meier, M. Carandini, “Masking by fast gratings,” J. Vision 2, 293–301 (2002). [CrossRef]
  19. D. H. Kelly, “Visual responses to time-dependent stimuli. I. Amplitude sensitivity measurements,” J. Opt. Soc. Am. 51, 422–429 (1961). [CrossRef] [PubMed]
  20. A. L. Fairhall, G. D. Lewen, W. Bialek, R. R. de Ruyter van Steveninck, “Efficiency and ambiguity in an adaptive neural code,” Nature 412, 787–792 (2001). [CrossRef] [PubMed]
  21. D. Rose, I. Lowe, “Dynamics of adaptation to contrast,” Perception 11, 505–528 (1982). [CrossRef] [PubMed]
  22. J. Thorson, M. Biederman-Thorson, “Distributed relaxation processes in sensory adaptation,” Science 183, 161–172 (1974). [CrossRef] [PubMed]
  23. S. A. Baccus, M. Meister, “Fast and slow contrast adaptation in retinal circuitry,” Neuron 36, 909–919 (2002). [CrossRef] [PubMed]
  24. J. D. Victor, “The dynamics of the cat retinal X cell centre,” J. Physiol. (London) 386, 219–246 (1987).
  25. B. H. Crawford, “Visual adaptation in relation to brief conditioning stimuli,” Proc. R. Soc. London 134, 283–302 (1947). [CrossRef]
  26. N. Graham, D. C. Hood, “Modeling the dynamics of light adaptation: The merging of two traditions,” Vision Res. 32, 1373–1393 (1992). [CrossRef] [PubMed]
  27. M. M. Hayhoe, M. E. Levin, R. J. Koshel, “Subtractive processes in light adaptation,” Vision Res. 32, 323–333 (1992). [CrossRef] [PubMed]
  28. D. Laming, Sensory Analysis (Academic, London, 1986).
  29. J. H. van Hateren, “Processing of natural time series of intensities by the visual system of the blowfly,” Vision Res. 37, 3407–3416 (1997). [CrossRef]
  30. D. L. Ruderman, “The statistics of natural images,” Network 5, 517–548 (1994). [CrossRef]
  31. N. Brady, D. J. Field, “Local contrast in natural images: normalisation and coding efficiency,” Perception 29, 1041–1055 (2000). [CrossRef]
  32. Y. Tadmor, D. J. Tolhurst, “Calculating the contrasts that retinal ganglion cells and LGN neurones encounter in natural scenes,” Vision Res. 40, 3145–3157 (2000). [CrossRef] [PubMed]
  33. M. E. Rudd, L. G. Brown, “Stochastic retinal mechanisms of light adaptation and gain control,” Spatial Vision 10, 125–148 (1996). [CrossRef] [PubMed]
  34. S. S. Wolfson, N. Graham, “Exploring the dynamics of light adaptation: the effects of varying the flickering background’s duration in the probed-sinewave paradigm,” Vision Res. 40, 2277–2289 (2000). [CrossRef]
  35. R. J. Snowden, “Contrast gain mechanism or transient channel? Why the effects of a background pattern alter over time,” Vision Res. 41, 1879–1883 (2001). [CrossRef] [PubMed]
  36. H. P. Snippe, L. Poot, J. H. van Hateren are preparing a manuscript to be called “Asymmetric dynamics of adaptation after onset and offset of flicker.”

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited