OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Vol. 20, Iss. 9 — Sep. 1, 2003
  • pp: 1694–1713

Artifacts in spatiochromatic stimuli due to variations in preretinal absorption and axial chromatic aberration: implications for color physiology

Nicolas P. Cottaris  »View Author Affiliations


JOSA A, Vol. 20, Issue 9, pp. 1694-1713 (2003)
http://dx.doi.org/10.1364/JOSAA.20.001694


View Full Text Article

Acrobat PDF (3160 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The spatiochromatic receptive-field structure of neurons in the macaque visual system has been studied almost exclusively with stimuli based on the human foveal cone fundamentals of Smith and Pokorny [Vision Res. 15, 161 (1975)] and generated on cathode ray tube displays. In the current study the artifacts evoked by cone-isolating, spatially structured stimuli due to variations in the eye’s preretinal absorption characteristics and axial chromatic aberration are quantified. In addition, the luminance artifacts evoked by nominally isoluminant sinusoidal grating stimuli due to the same factors are quantified. The results indicate that the spatiochromatic stimuli commonly employed to map receptive fields of neurons at eccentricities >10 deg are especially prone to artifacts and that these artifacts are maximal for the high-contrast S-cone-isolating stimuli that are often used. On the basis of these simulations, a method is introduced that improves spatiochromatic receptive-field estimates by compensating for response contributions from the incompletely silenced cone mosaics during cone-isolating stimulation.

© 2003 Optical Society of America

OCIS Codes
(330.1720) Vision, color, and visual optics : Color vision
(330.4270) Vision, color, and visual optics : Vision system neurophysiology

Citation
Nicolas P. Cottaris, "Artifacts in spatiochromatic stimuli due to variations in preretinal absorption and axial chromatic aberration: implications for color physiology," J. Opt. Soc. Am. A 20, 1694-1713 (2003)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-20-9-1694


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. G. Wyszecki and W. S. Stiles, Color Science: Concepts and Methods, Quantitative Data and Formulae (Wiley, New York, 1982).
  2. A. Knowles and H. J. A. Dartnall, “The photobiology of vision,” in The Eye, H. Davson, ed. (Academic, London, 1977).
  3. L. T. Sharpe, A. Stockman, H. Jagle, and J. Nathans, “Opsin genes, cone photopigments, color vision, and color blindness,” in Color Vision: From Genes to Perception, K. R. Gegenfurtner and L. T. Sharpe, eds. (Cambridge U. Press, Cambridge, UK, 2000), pp. 3–51.
  4. U. Stabell and B. Stabell, “Variation in density of macular pigmentation and in short-wave cone sensitivity with eccentricity,” J. Opt. Soc. Am. 70, 706–711 (1980).
  5. D. M. Snodderly, P. K. Brown, F. C. Delori, and J. D. Auran, “The macular pigment. I. Absorbance spectra, localization, and discrimination from other yellow pigments in primate retinas,” Invest. Ophthalmol. Visual Sci. 25, 660–673 (1984).
  6. D. M. Snodderly, J. D. Auran, and F. C. Delori, “The macular pigment. II. Spatial distribution in primate retinas,” Invest. Ophthalmol. Visual Sci. 25, 674–685 (1984).
  7. A. Stockman, D. I. A. MacLeod, and N. E. Johnson, “Spectral sensitivities of the human cones,” J. Opt. Soc. Am. A 10, 2491–2521 (1993).
  8. J. Pokorny, V. C. Smith, and M. Lutze, “Aging of the human lens,” Appl. Opt. 26, 1437–1440 (1988).
  9. R. A. Bone and J. M. B. Sparrock, “Comparison of macular pigment densities in human eyes,” Vision Res. 11, 1057–1064 (1971).
  10. D. V. Norren and J. J. Vos, “Spectral transmission of the human ocular media,” Vision Res. 14, 1237–1244 (1974).
  11. B. R. Hammond, B. R. Wooten, and D. M. Snodderly, “Individual variations in the spatial profile of human macular pigment,” J. Opt. Soc. Am. A 14, 1187–1196 (1997).
  12. A. Stockman and L. T. Sharpe, “Cone spectral sensitivities and color matching,” in Color Vision: From Genes to Perception, K. R. Gegenfurtner and L. T. Sharpe, eds. (Cambridge U. Press, Cambridge, UK, 2000), pp. 53–87.
  13. P. Simonet and C. W. Campbell, “The optical transverse chromatic aberration of the human eye,” Vision Res. 30, 187–206 (1990).
  14. L. N. Thibos, A. Bradley, D. L. Still, X. Zhang, and P. A. Howard, “Theory and measurement of ocular chromatic aberration,” Vision Res. 30, 33–49 (1990).
  15. V. C. Smith and J. Pokorny, “Spectral sensitivity of the foveal cone photopigments between 400 and 500 nm,” Vision Res. 15, 161–171 (1975).
  16. C. C. A. M. Gielen, J. A. M. Ginsbergen, and A. J. H. Ven-drik, “Reconstruction of cone-system contributions to re-sponses of colour-opponent neurons in monkey lateral geniculate,” Biological Cybern. 44, 211–221 (1982).
  17. R. C. Reid and R. M. Shapley, “Spatial structure of cone inputs to receptive fields in primate lateral geniculate nucleus,” Nature 356, 716–718 (1992).
  18. N. P. Cottaris, S. D. Elfar, and R. L. De Valois, “Spatio-temporal luminance and chromatic receptive field profiles of macaque striate cortex simple cells,” Soc. Neurosci. Abst. 22, 376.3 (1996).
  19. E. A. Benardete and E. Kaplan, “Dynamics of primate P retinal ganglion cells: responses to chromatic and achromatic stimuli,” J. Physiol. 519, 775–790 (1999).
  20. B. R. Conway, “Spatial structure of cone inputs to color cells in alert macaque primary visual cortex (V-1),” J. Neurosci. 21, 2768–2783 (2001).
  21. A. M. Derrington, J. Krauskopf, and P. Lennie, “Chromatic mechanisms in lateral geniculate nucleus of macaque,” J. Physiol. (London) 357, 241–265 (1984).
  22. P. Lennie, J. Krauskopf, and G. Sclar, “Chromatic mechanisms in striate cortex of macaque,” J. Neurosci. 10, 649–669 (1990).
  23. N. P. Cottaris and R. L. De Valois, “Temporal dynamics of chromatic tuning in macaque primary visual cortex,” Nature 395, 896–900 (1998).
  24. D. C. Kiper, S. B. Fenstemaker, and K. R. Gegenfurtner, “Chromatic properties of neurons in macaque area V2,” Visual Neurosci. 14, 1061–1072 (1997).
  25. K. R. Gegenfurtner, D. C. Kiper, and J. Levitt, “Functional properties of neurons in macaque area V3,” J. Neurophys. 77, 1906–1923 (1997).
  26. K. R. Gegenfurtner, D. C. Kiper, J. Beusmans, M. Carandini, Q. Zaidi, and J. A. Movshon, “Chromatic properties of neurons in macaque MT,” Visual Neurosci. 11, 455–466 (1994).
  27. E. N. Johnson, M. J. Hawken, and R. M. Shapley, “The spatial transformation of color in the primary visual cortex of the macaque monkey,” Nature Neurosci. 4, 409–416 (2001).
  28. S. Chatterjee and E. M. Callaway, “S cone contributions to the magnocellular visual pathway in macaque monkey,” Neuron 35, 1135–1146 (2002).
  29. A. R. Wade and B. A. Wandell, “Chromatic light adaptation measured using functional magnetic resonance imaging,” J. Neurosci. 22, 8148–8157 (2002).
  30. D. I. Flitcroft, “The interactions between chromatic aberration, defocus and stimulus chromaticity: implications for visual physiology and colorimetry,” Vision Res. 29, 249–360 (1989).
  31. O. Estevez and H. Spekreijse, “The ‘silent substitution’ method in visual research,” Vision Res. 22, 681–691 (1982).
  32. A. Eisner and D. I. A. MacLeod, “Flicker photometric study of chromatic adaptation: selective suppression of cone inputs by colored backgrounds,” J. Opt. Soc. Am. 71, 705–718 (1981).
  33. D. H. Brainard, A. Roorda, Y. Yamauchi, J. B. Calderone, A. Metha, M. Neitz, J. Neitz, D. R. Williams, and G. H. Jacobs, “Functional consequences of the relative numbers of L and M cones,” J. Opt. Soc. Am. A 17, 607–614 (2000).
  34. R. L. De Valois, H. C. Morgan, M. C. Polson, W. R. Mead, and E. M. Hull, “Psychophysical studies of monkey vision I. Macaque luminosity and color vision tests,” Vision Res. 14, 53–67 (1974).
  35. D. B. Judd, “Basic correlates of the visual stimulus,” in Handbook of Experimental Psychology, S. S. Stevens, ed. (Wiley, New York, 1951), pp. 811–867.
  36. J. J. Vos, “Colorimetric and photometric properties of a 2 degree fundamental observer,” Color Res. Appl. 3, 125–128 (1978).
  37. D. I. A. MacLeod and R. M. Boynton, “Chromaticity diagram showing cone excitation by stimuli of equal luminance,” J. Opt. Soc. Am. 69, 1183–1186 (1979).
  38. A. Stockman, L. T. Sharpe, and C. C. Fach, “The spectral sensitivity of the human short-wavelength sensitive cones derived from thresholds and color matches,” Vision Res. 39, 2901–2927 (1999).
  39. R. A. Bone, J. T. Landrum, and A. Cains, “Optical density spectra of the macular pigment in vivo and in vitro,” Vision Res. 32, 105–110 (1992).
  40. D. A. Baylor, B. J. Nunn, and J. L. Schnapf, “Spectral sensitivity of cones of the monkey macaca fascicularis,” J. Physiol. 390, 145–160 (1987).
  41. D. H. Marimont and B. A. Wandell, “Matching color images: the impact of axial chromatic aberration,” J. Opt. Soc. Am. A 11, 3113–3122 (1994).
  42. H. H. Hopkins, “The frequency response of a defocused optical system,” Proc. R. Soc. London Ser. A 231, 91–103 (1955).
  43. L. N. Thibos, M. Ye, X. Zhang, and A. Bradley, “The chromatic eye: a new reduced-eye model of ocular aberrations in humans,” Appl. Opt. 31, 3594–3600 (1992).
  44. D. R. Williams, D. H. Brainard, M. J. McMahon, and R. Navarro, “Double-pass and interferometric measures of the optical quality of the eye,” J. Opt. Soc. Am. A 11, 3123–3135 (1994).
  45. V. Virsu and B. B. Lee, “Light adaptation in cells of the macaque lateral geniculate nucleus and its relation to human light adaptation,” J. Neurophys. 50, 864–877 (1983).
  46. C. A. Curcio, K. A. Allen, K. R. Sloan, C. L. Lerea, J. B. Hurley, I. B. Klock, and A. H. Milam, “Distribution and morphology of human cone photoreceptors stained with anti-blue opsin,” J. Comp. Neurol. 312, 610–624 (1991).
  47. B. H. Crawford, “The scotopic visibility function,” Proc. Phys. Soc. London Sect. B 62, 321–344 (1949).
  48. F. S. Said and R. A. Weale, “The variation with age of the spectral transmissivity of the living human crystalline lens,” Gerontologia 3, 213–231 (1959).
  49. A. Stockman, D. I. A. MacLeod, and N. E. Johnson, “Spectral sensitivities of the human cones,” J. Opt. Soc. Am. A 10, 2491–2521 (1993).
  50. A. Stockman and L. T. Sharpe, “Spectral sensitivities of the middle- and long-wavelength sensitive cones derived from measurements in observers of known genotype,” Vision Res. 40, 1711–1737 (2000).
  51. J. P. Jones and L. A. Palmer, “The two-dimensional spatial structure of simple receptive fields in cats visual cortex,” J. Neurophysiol. 58, 1187–1211 (1987).
  52. E. Kaplan and R. M. Shapley, “The primate retina contains two types of ganglion cells, with high and low contrast sensitivity,” Proc. Natl. Acad. Sci. USA 83, 2755–2757 (1986).
  53. L. J. Croner and E. Kaplan, “Receptive fields of P and M ganglion cells across the primate retina,” Vision Res. 35, 7–24 (1995).
  54. J. Kremers, H. P. N. School, H. Knau, T. T. M. Berendschot, T. Usui, and L. T. Sharpe, “L/M cone ratios in human trichromats assessed by psychophysics, electroretinography, and retinal densitometry,” J. Opt. Soc. Am. A 17, 517–526 (2000).
  55. J. Albrecht, H. Jagle, D. C. Hood, and L. T. Sharpe, “The multifocal electroretinogram (mfERG) and cone isolating stimuli: variation in L- and M-cone driven signals across the retina,” J. Vision 2, 543–558 (2002).
  56. K. R. Dobkins, A. Thiele, and T. D. Albright, “Comparison of red–green equiluminance points in humans and macaques: evidence for different L:M cone ratios between species,” J. Opt. Soc. Am. A 17, 545–556 (2000).
  57. N. P. Cottaris, S. D. Elfar, and R. L. De Valois, “Strong S-cone inputs to macaque V1 simple cells’ spatiotemporal receptive fields corrected for axial chromatic aberration,” Soc. Neurosci. Abstr. 26, 54.11 (2000).
  58. E. Seidemann, A. B. Poirson, B. A. Wandell, and W. T. Newsome, “Color signals in area MT of the macaque monkey,” Neuron 24, 911–917 (1999).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited