OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Vol. 20, Iss. 9 — Sep. 1, 2003
  • pp: 1725–1738

Validating the use of channels to estimate the ideal linear observer

Brandon D. Gallas and Harrison H. Barrett  »View Author Affiliations


JOSA A, Vol. 20, Issue 9, pp. 1725-1738 (2003)
http://dx.doi.org/10.1364/JOSAA.20.001725


View Full Text Article

Enhanced HTML    Acrobat PDF (903 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Image quality can be objectively defined according to how well an observer can perform a task of practical interest given the image. We review a practical model observer for the signal-detection task. The ideal observer for this task is a function of the image probability distributions, which are multidimensional and complicated. This observer is often too difficult to derive or estimate. An alternative to the ideal observer is the ideal linear observer, which can still be unmanageable. Our alternative is the ideal linear observer constrained to a small set of channels: the channelized-Hotelling observer.

© 2003 Optical Society of America

OCIS Codes
(110.2960) Imaging systems : Image analysis
(110.2970) Imaging systems : Image detection systems
(110.3000) Imaging systems : Image quality assessment

History
Original Manuscript: December 30, 2002
Revised Manuscript: April 23, 2003
Manuscript Accepted: April 23, 2003
Published: September 1, 2003

Citation
Brandon D. Gallas and Harrison H. Barrett, "Validating the use of channels to estimate the ideal linear observer," J. Opt. Soc. Am. A 20, 1725-1738 (2003)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-20-9-1725


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. Wald, Statistical Decision Functions (Wiley, New York, 1950).
  2. D. M. Green, J. A. Swets, Signal Detection Theory and Psychophysics (Wiley, New York, 1966) [reprint (Krieger, New York, 1974)].
  3. H. L. Van Trees, Detection, Estimation, and Modulation Theory (Wiley, New York, 1968), Vols. I–III.
  4. K. Fukunaga, Introduction to Statistical Pattern Recognition, 2nd ed. (Academic, New York, 1990).
  5. J. L. Melsa, D. L. Cohn, Decision and Estimation Theory (McGraw-Hill, New York, 1978).
  6. J. A. Swets, R. M. Pickett, Evaluation of Diagnostic Systems: Methods from Signal Detection Theory (Academic, New York, 1982).
  7. N. A. MacMillan, C. D. Creelman, Detection Theory: A User’s Guide (Cambridge U. Press, Cambridge, UK, 1991).
  8. H. H. Barrett, “Objective assessment of image quality: effects of quantum noise and object variability,” J. Opt. Soc. Am. A 7, 1266–1278 (1990). [CrossRef] [PubMed]
  9. K. M. Hanson, “Detectability in computed tomographic images,” Med. Phys. 6, 441–451 (1979). [CrossRef] [PubMed]
  10. R. F. Wagner, D. G. Brown, C. E. Metz, “On the multiplex advantage of coded source/aperture photon imaging,” in Digital Radiography, W. R. Brody, ed., Proc. SPIE314, 72–76 (1981). [CrossRef]
  11. K. J. Myers, J. P. Rolland, H. H. Barrett, R. F. Wagner, “Aperture optimization for emission imaging: effect of a spatially varying background,” J. Opt. Soc. Am. A 7, 1279–1293 (1990). [CrossRef] [PubMed]
  12. H. H. Barrett, J. L. Denny, R. F. Wagner, K. J. Myers, “Objective assessment of image quality. II. fisher information, fourier crosstalk, and figures of merit for task performance,” J. Opt. Soc. Am. A 12, 834–852 (1995). [CrossRef]
  13. A. Rose, “The sensitivity performance of the human eye on an absolute scale,” J. Opt. Soc. Am. 38, 196–208 (1948) (also appeared in Ref. 14). [CrossRef] [PubMed]
  14. T. E. Cohn, ed., Visual Detection, Vol. 3 of OSA Collected Works in Optics Series (Optical Society of America, Washington, D.C., 1993).
  15. W. P. Tanner, T. G. Birdsall, “Definitions of d′ and η as psychophysical measures,” J. Acoust. Soc. Am. 30, 922–928 (1958) (also appeared in Refs. 14 and 16). [CrossRef]
  16. J. A. Swets, Signal Detection and Recognition by Human Observers: Contemporary Readings (Wiley, New York, 1964).
  17. H. B. Barlow, “The efficiency of detecting changes in density in random dot patterns,” Vision Res. 18, 637–650 (1977). [CrossRef]
  18. A. E. Burgess, R. J. Jennings, R. F. Wagner, H. B. Barlow, “Efficiency of human visual discrimination,” Science 214, 93–94 (1981). [CrossRef] [PubMed]
  19. C. E. Metz, “Fundamental ROC analysis,” in Handbook of Medical Imaging. Vol. 1: Physics and Psychophysics, J. Beutel, H. L. Kundel, R. L. Van Metter, eds. (SPIE Press, Bellingham, Wash., 2000), pp. 751–769.
  20. H. Hotelling, “The generalization of Student’s ratio,” Ann. Math. Stat. 2, 360–378 (1931). [CrossRef]
  21. R. A. Fisher, “The use of multiple measurements in taxonomic problems,” Ann Eugen. 7, 179–188 (1936). [CrossRef]
  22. D. O. North, “An analysis of factors which determine signal-noise discrimination in pulsed carrier systems,” Proc. IEEE 51, 1016–1027 (1943) [reprinted in Proc. IRE 51, 1016–1028 (1963)]. [CrossRef]
  23. J. H. Van Vleck, D. Middleton, “A theoretical comparison of the visual, aural, and meter reception of pulsed signals in the presence of noise,” J. Appl. Phys. 17, 940–971 (1946). [CrossRef]
  24. S. Goldman, Information Theory (Prentice-Hall, New York, 1953).
  25. H. H. Barrett, T. Gooley, K. Girodias, J. Rolland, T. White, J. Yao, “Linear discriminants and image quality,” Image Vision Comput. 10, 451–460 (1992). [CrossRef]
  26. K. R. Castleman, Digital Image Processing (Prentice-Hall, Englewood Cliffs, N.J., 1979).
  27. K. Fukunaga, R. R. Hayes, “Effects of sample size in classifier design,” IEEE Trans. Pattern Anal. Mach. Intell. 11, 873–885 (1989). [CrossRef]
  28. R. F. Wagner, D. G. Brown, J. P. Guedon, K. J. Myers, K. A. Wear, “Multivariate Gaussian pattern classification: effects of finite sample size and the addition of correlated or noisy features on summary measures of goodness,” in Information Processing in Medical Imaging: Proceeding of the 13th International Conference (IPMI ’93), H. H. Barrett, A. F. Gmitro, eds. (Springer-Verlag, New York, 1993), pp. 507–524.
  29. K. J. Myers, H. H. Barrett, “Addition of a channel mechanism to the ideal-observer model,” J. Opt. Soc. Am. A 4, 2447–2457 (1987). [CrossRef] [PubMed]
  30. A. E. Burgess, X. Li, C. K. Abbey, “Nodule detection in two component noise: toward patient structure,” in Medical Imaging 1997: Image Perception, H. L. Kundel, ed., Proc. SPIE3036, 2–13 (1997). [CrossRef]
  31. D. J. DeVries, M. A. King, E. J. Soares, B. M. W. Tsui, C. E. Metz, “Evaluation of the effect of scatter correction on lesion detection in hepatic SPECT imaging,” IEEE Trans. Nucl. Sci. 44, 1733–1740 (1997). [CrossRef]
  32. M. P. Eckstein, C. K. Abbey, J. S. Whiting, “Human vs. model observers in anatomic backgrounds,” in Medical Imaging 1998: Image Processing, H. L. Kundel, ed., Proc. SPIE3340, 16–26 (1998). [CrossRef]
  33. A. E. Burgess, “Visual signal detection with two-component noise: low-pass spectrum effects,” J. Opt. Soc. Am. A 16, 694–704 (1999). [CrossRef]
  34. M. P. Eckstein, C. K. Abbey, F. O. Bochud, “Practical guide to model observers for visual detection in synthetic and natural noisy images,” in Handbook of Medical Imaging. Vol. 1: Physics and Psychophysics, J. Beutel, H. L. Kundel, R. L. Van Metter, eds. (SPIE Press, Bellingham, Wash., 2000), pp. 629–654.
  35. C. K. Abbey, H. H. Barrett, “Human and model-observer performance in ramp-spectrum noise: effects of regularization and object variability,” J. Opt. Soc. Am. A 18, 473–488 (2001). [CrossRef]
  36. D. A. Hutton, R. N. Strickland, “Channelized detection filters for detecting tumors in nuclear medical images,” in Medical Imaging 1997: Image Processing, K. M. Hanson, ed., Proc. SPIE3034, 457–466 (1997). [CrossRef]
  37. H. H. Barrett, C. K. Abbey, B. Gallas, M. Eckstein, “Stabilized estimates of Hotelling-observer detection performance in patient-structured noise,” in Medical Imaging 1998: Image Perception, H. L. Kundel, ed., Proc. SPIE3340, 27–43 (1998). [CrossRef]
  38. S. Faris, D. Wilson, H. Barrett, D. Dougherty, G. Gindi, I. T. Hsiao, “Using a digital anatomical phantom to opti-mize an imaging system,” in Medical Imaging 1999: Physics of Medical Imaging, J. M. Boone, J. T. Dobbins, eds., Proc. SPIE3659, 98–106 (1999). [CrossRef]
  39. J. S. Boswell, A. Bodano, R. M. Gagne, B. D. Gallas, K. J. Myers, “Assessment of lesion detectability by Monte Carlo modeling of digital radiography systems,” in Medical Imaging 2002: Physics of Medical Imaging, L. E. Antonuk, M. J. Yaffe, eds., Proc. SPIE4682, 665–674 (2002). [CrossRef]
  40. J. P. Rolland, H. H. Barrett, “Effect of random background inhomogeneity on observer detection performance,” J. Opt. Soc. Am. A 9, 649–658 (1992). [CrossRef] [PubMed]
  41. D. G. Brown, M. F. Insana, M. Tapiovaara, “Detection performance of the ideal decision function and its McLaurin expansion: signal position unknown,” J. Acoust. Soc. Am. 97, 379–398 (1995). [CrossRef] [PubMed]
  42. H. H. Barrett, K. J. Myers, B. D. Gallas, E. Clarkson, H. Zhang, “Megalopinakophobia: its symptoms and cures,” in Medical Imaging 2001: Physics of Medical Imaging, L. E. Antonuk, M. J. Yaffee, eds., Proc. SPIE4320, 299–307 (2001). [CrossRef]
  43. H. H. Barrett, K. J. Myers, Foundations of Image Science (to be published).
  44. H. C. Andrews, B. R. Hunt, Digital Image Restoration (Prentice-Hall, Englewood Cliffs, N.J., 1977).
  45. H. H. Barrett, W. Swindell, Radiological Imaging: The Theory of Image Formation, Detection, and Processing (Academic, San Diego, Calif., 1981).
  46. E. Clarkson, M. A. Kupinski, H. H. Barrett, “Transformation of characteristic functionals through imaging systems,” Opt. Express 10, 536–539 (2002). [CrossRef] [PubMed]
  47. B. D. Gallas, “Variance of the channelized-Hotelling observer from a finite number of trainers and testers,” in Medical Imaging, 2003: Image Perception, Observer Performance, and Technology Assessment, D. P. Chakraborty, E. A. Krupinski, eds., Proc. SPIE5034, 100–111 (2003). [CrossRef]
  48. International Commission on Radiation Units and Measurements, “Medical imaging: the assessment of image quality,” (International Commission on Radiation Units and Measurements, Bethesda, Md., 1996).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited