OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Vol. 20, Iss. 9 — Sep. 1, 2003
  • pp: 1763–1770

Evaluation of the spatial coherence of a light beam through transverse intensity measurements

Riccardo Borghi, Giorgio Guattari, Lorenzo de la Torre, Franco Gori, and Massimo Santarsiero  »View Author Affiliations

JOSA A, Vol. 20, Issue 9, pp. 1763-1770 (2003)

View Full Text Article

Acrobat PDF (177 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The problem of recovering the coherence features of a partially coherent quasi-monochromatic scalar optical source, starting solely from intensity measurements on the emitted beam, is addressed in the most general way, under the paraxial approximation. In particular, it is shown that on expanding the beam emitted by the source as a bundle of partially correlated Hermite–Gaussian beams, the correlation coefficients can be recovered, in principle, simply by performing scalar products between transverse intensity distributions and suitably defined functions.

© 2003 Optical Society of America

OCIS Codes
(030.1640) Coherence and statistical optics : Coherence
(030.4070) Coherence and statistical optics : Modes
(030.6600) Coherence and statistical optics : Statistical optics

Riccardo Borghi, Giorgio Guattari, Lorenzo de la Torre, Franco Gori, and Massimo Santarsiero, "Evaluation of the spatial coherence of a light beam through transverse intensity measurements," J. Opt. Soc. Am. A 20, 1763-1770 (2003)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. K. A. Nugent, “Wave field determination using three-dimensional intensity information,” Phys. Rev. Lett. 68, 2261–2264 (1993).
  2. G. Hazak, “Comments on ‘Wave field determination using three-dimensional intensity information’,” Phys. Rev. Lett. 69, 2874 (1992).
  3. F. Gori, M. Santarsiero, and G. Guattari, “Coherence and space distribution of intensity,” J. Opt. Soc. Am. A 10, 673–679 (1993).
  4. T. E. Gureyev, A. Roberts, and K. A. Nugent, “Partially coherent fields, the transport-of-intensity equation, and phase uniqueness,” J. Opt. Soc. Am. A 12, 1942–1946 (1995).
  5. E. Tervonen, J. Turunen, and A. T. Friberg, “Transverse laser-mode structure determination from spatial coherence measurements: experimental results,” Appl. Phys. B 49, 409–414 (1989).
  6. A. E. Siegman and S. W. Townsend, “Output beam propagation and beam quality from a multimode stable-cavity laser,” IEEE J. Quantum Electron. 29, 1212–1217 (1993).
  7. A. Cutolo, T. Isernia, I. Izzo, R. Pierri, and L. Zeni, “Transverse mode analysis of a laser beam by near- and far-field intensity measurements,” Appl. Opt. 34, 7974–7978 (1995).
  8. J.-P. Hermier, A. Bramati, A. Z. Khoury, E. Giacobino, J.-Ph. Poizat, T. J. Chang, and Ph. Grangier, “Spatial quantum noise of semiconductor lasers,” J. Opt. Soc. Am. B 16, 2140–2145 (1999).
  9. C. L. Garrido Alzar, S. M. de Paula, M. Martinelli, R. J. Horowicz, A. Z. Khoury, and G. A. Barbosa, “Transverse Fourier analysis of squeezed light in diode lasers,” J. Opt. Soc. Am. B 18, 1189–1195 (2001).
  10. A. Barty, K. A. Nugent, D. Paganin, and A. Roberts, “Quan-titative optical phase microscopy,” Opt. Lett. 223, 817–819 (1998).
  11. D. Paganin and K. A. Nugent, “Noninterferometric phase imaging with partially coherent light,” Phys. Rev. Lett. 80, 2586–2589 (1998).
  12. G. Gbur and E. Wolf, “Diffraction tomography without phase information,” Opt. Lett. 27, 1890–1892 (2002).
  13. M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge U. Press, Cambridge, UK, 1999).
  14. M. R. Teague, “Deterministic phase retrieval: a Green’s function solution,” J. Opt. Soc. Am. A 73, 1434–1441 (1983).
  15. L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge U. Press, Cambridge, UK, 1995).
  16. J. Turunen, E. Tervonen, and A. T. Friberg, “Coherence theoretic algorithm to determine the transverse-mode structure of lasers,” Opt. Lett. 14, 627–629 (1989).
  17. B. Lü, B. Zhang, B. Cai, and C. Yang, “A simple method for estimating the number of effectively oscillating modes and weighting factors of mixed mode laser beams behaving like Gaussian Schell-model beams,” Opt. Commun. 101, 49–52 (1993).
  18. J. Tu and S. Tamura, “Analytic relation for recovering the mutual intensity by means of intensity information,” J. Opt. Soc. Am. A 15, 202–206 (1998).
  19. R. Borghi and M. Santarsiero, “Modal decomposition of partially coherent flat-topped beams produced by multimode lasers,” Opt. Lett. 23, 313–315 (1998).
  20. F. Gori, M. Santarsiero, R. Borghi, and G. Guattari, “Intensity-based modal analysis for partially coherent beams with Hermite–Gaussian modes,” Opt. Lett. 23, 989–991 (1998).
  21. A. E. Siegman, Lasers (University Science Books, Mill Valley, Calif., 1986).
  22. M. Santarsiero, F. Gori, R. Borghi, and G. Guattari, “Evaluation of the modal structure for light beams with Hermite–Gaussian modes,” Appl. Opt. 38, 5272–5281 (1999).
  23. R. Borghi and M. Santarsiero, “Modal structure analysis for a class of axially symmetric flat-topped laser beams,” J. Quantum Electron. 35, 745–750 (1999).
  24. X. Xue and A. G. Kirk, “Transverse modal characterization of VCSELs based on intensity measurement,” in Optoelectronic Interconnects VII; Photonics Packaging and Integration II, M. R. Feldman, R. L. Q. Li, W. B. Matkin, and S. Tang, eds., Proc. SPIE 3952, 144–153 (2000).
  25. M. Santarsiero, F. Gori, and R. Borghi, “Modal weight determination for a class of multimode beams,” Proceedings of the 5th International Workshop on Laser Beams and Optics Characterization (Technische Universität Berlin, Berlin, Germany, 2000), pp. 161–170.
  26. X. Xue, H. Wei, and A. G. Kirk, “Intensity-based modal decomposition of optical beams in terms of Hermite–Gaussian functions,” J. Opt. Soc. Am. A 17, 1086–1091 (2000).
  27. H. Laabs, B. Eppich, and H. Weber, “Modal decomposition of partially coherent beams using the ambiguity function,” J. Opt. Soc. Am. A 19, 497–504 (2002).
  28. A. Papoulis, “Ambiguity function in Fourier optics,” J. Opt. Soc. Am. 64, 779 (1974).
  29. B. Eppich, “Definition, meaning and measurements of coherence parameters,” in Laser Resonators IV, A. V. Kudryashov and A. H. Paxton, eds., Proc. SPIE 4270, 71 (2001).
  30. M. Abramowitz and I. Stegun, Handbook of Mathematical Functions (Dover, New York, 1972).
  31. I. S. Gradshtein and I. M. Ryzhik, Table of Integrals, Series and Products (Academic, New York, 1980).
  32. H. Gamo, “Matrix treatment of partial coherence,” in Progress in Optics, Vol. III, E. Wolf, ed. (North-Holland, Amsterdam, 1964), pp. 233–243.
  33. A. P. Prudnikov, Yu. A. Brychkov, and O. I. Marichev, Integrals and Series (Gordon, New York, 1986), Vol. 2.
  34. R. Borghi, G. Piquero, and M. Santarsiero, “Use of biorthogonal functions for the modal decomposition of multimode beams,” Opt. Commun. 194, 235–242 (2001).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited