OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Vol. 20, Iss. 9 — Sep. 1, 2003
  • pp: 1785–1791

Light emission from whispering-gallery modes in microscopic spheres

Michael J. Jory, Elaine A. Perkins, and J. Roy Sambles  »View Author Affiliations


JOSA A, Vol. 20, Issue 9, pp. 1785-1791 (2003)
http://dx.doi.org/10.1364/JOSAA.20.001785


View Full Text Article

Acrobat PDF (407 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The emission of light from whispering-gallery modes excited in microscopic spheres is examined. An evanescent wave is produced by total internal reflection of an optical beam at a planar glass–air interface. This evanescent wave is used to excite whispering-gallery modes in single microscopic spheres placed behind the glass–air interface. The intensity of light emitted into the air half-space from such spheres is measured as a function of scattering angle for both p- and s-polarized input beams. These data are compared with a simple theory for the emission from a point source above a planar glass substrate.

© 2003 Optical Society of America

OCIS Codes
(230.5750) Optical devices : Resonators
(260.6970) Physical optics : Total internal reflection
(290.5850) Scattering : Scattering, particles

Citation
Michael J. Jory, Elaine A. Perkins, and J. Roy Sambles, "Light emission from whispering-gallery modes in microscopic spheres," J. Opt. Soc. Am. A 20, 1785-1791 (2003)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-20-9-1785


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. G. Mie, “Beitrage zur optik truber medien speziell kolloidaler metallosungen,” Ann. Phys. (Leipzig) 25, 377–445 (1908).
  2. M. Born and E. Wolf, Principles of Optics (Pergamon, New York, 1980).
  3. H. C. Van De Hulst, Light Scattering by Small Particles (Dover, New York, 1981).
  4. C. Liu, T. Weigel, and G. Schweiger, “Structural resonances in a dielectric sphere on a dielectric surface illuminated by an evanescent wave,” Opt. Commun. 185, 249–261 (2000).
  5. R. Wannemacher, A. Pack, and M. Quinten, “Resonant absorption and scattering in evanescent fields,” Appl. Phys. B 68, 225–232 (1999).
  6. A. V. Zvyagin and K. Goto, “Mie scattering of evanescent waves by a dielectric sphere: comparison of multipole expansion and group-theory methods,” J. Opt. Soc. Am. A 15, 3003–3008 (1998).
  7. C. Liu, T. Kaiser, S. Lange, and G. Schweiger, “Structural resonances in a dielectric sphere illuminated by an evanescent wave,” Opt. Commun. 117, 521–531 (1995).
  8. D. C. Prieve and J. Y. Walz, “Scattering of an evanescent surface-wave by a microscopic dielectric sphere,” Appl. Opt. 32, 1629–1641 (1993).
  9. D. C. Prieve, F. Lanni, and F. Luo, “Brownian-motion of a hydrosol particle in a colloidal force-field,” J. Chem. Soc., Faraday Trans. 1 83, 297–307 (1987).
  10. D. C. Prieve and N. A. Frej, “Total internal-reflection microscopy—a quantitative tool for the measurement of colloidal forces,” Langmuir 6, 396–403 (1990).
  11. M. A. Brown, A. L. Smith, and E. J. Staples, “A method using total internal-reflection microscopy and radiation pressure to study weak interaction forces of particles near surfaces,” Langmuir 5, 1319–1324 (1989).
  12. I. Braslavsky, R. Amit, B. M. J. Ali, O. Gileadi, A. Oppenheim, and J. Stavans, “Objective-type dark-field illumination for scattering from microbeads,” Appl. Opt. 40, 5650–5657 (2001).
  13. G. A. Schumacher and T. G. M. Vandeven, “Evanescent wave scattering studies on latex-glass interactions,” Langmuir 7, 2028–2033 (1991).
  14. Z. M. Xia and T. G. M. Vandeven, “Adhesion kinetics of phosphatidylcholine liposomes by evanescent wave light-scattering,” Langmuir 8, 2938–2946 (1992).
  15. M. Polverari and T. G. M. Vandeven, “Electrostatic and steric interactions in particle deposition studied by evanescent-wave light-scattering,” J. Colloid Interface Sci. 173, 343–353 (1995).
  16. W. J. Albery, G. R. Kneebone, and A. W. Foulds, “Kinetics of colloidal deposition studied by a wall-jet cell,” J. Colloid Interface Sci. 108, 193–198 (1985).
  17. W. J. Albery, R. A. Fredlein, G. R. Kneebone, G. J. O’Shea, and A. L. Smith, “The kinetics of colloidal deposition under conditions of controlled potential,” Colloids Surf. 44, 337–356 (1990).
  18. B. Mizaikoff, “Mid infra-red evanescent wave sensors—a novel approach for subsea monitoring,” Meas. Sci. Technol. 10, 1185–1194 (1999).
  19. C. Malins, M. Landl, P. Simon, and B. D. MacCraith, “Fibre optic ammonia sensing employing novel near infrared dyes,” Sens. Actuators B 51, 359–367 (1998).
  20. L. T. Gao, C. J. Seliskar, and L. Milstein, “Spectroscopic sensing with a highly transparent, ion-exchangeable polymer blend,” Appl. Spectrosc. 51, 1745–1752 (1997).
  21. G. O’Keeffe, B. D. MacCraith, A. K. McEvoy, C. M. McDonagh, and J. F. McGilp, “Development of a LED-based phase fluorometric oxygen sensor using evanescent-wave excitation of a sol-gel immobilised dye,” Sens. Actuators B 29, 226–230 (1995).
  22. S. McCabe and B. D. MacCraith, “Novel mid infra-red LED as a source for optical-fiber gas-sensing,” Electron. Lett. 29, 1719–1721 (1993).
  23. R. J. Chang and A. J. Chamillo, Optical Processes in Microcavities (World Scientific, Singapore, 1996).
  24. S. Schiller and R. L. Byer, “High-resolution spectroscopy of whispering gallery modes in dielectric spheres,” Opt. Lett. 16, 1138–1140 (1991).
  25. L. Collot, V. Lefevre-Seguin, M. Brune, J. M. Raimond, and S. Haroche, “Very high-Q whispering-gallery mode resonances observed on fused-silica microspheres,” Europhys. Lett. 23, 327–334 (1993).
  26. M. L. Gorodetsky and V. S. Ilchenko, “High-Q optical whispering-gallery microresonantors—precession approach for spherical mode analysis and emission patterns with prism couplers,” Opt. Commun. 113, 133–143 (1994).
  27. M. Cai, O. Painter, and K. J. Vahala, “Observation of critical coupling in a fiber taper to a silica-microsphere whispering-gallery mode system,” Phys. Rev. Lett. 85, 74–77 (2000).
  28. H. Ishikawa, H. Tamaru, and K. Miyano, “Observation of a modulation effect caused by a microsphere resonator strongly coupled to a dielectric substrate,” Opt. Lett. 24, 643–645 (1999).
  29. H. Ishikawa, H. Tamaru, and K. Miyano, “Microsphere resonators strongly coupled to a plane dielectric substrate: coupling via the optical near field,” J. Opt. Soc. Am. A 17, 802–813 (2000).
  30. E. Hecht, Optics (Addison-Wesley, London, 1987), p. 107.
  31. V. Sandoghdar, F. Treussart, J. Hare, V. Lefevre-Seguin, J. M. Raimond, and S. Haroche, “Very low threshold whispering-gallery-mode microsphere laser,” Phys. Rev. A 54, R1777–R1780 (1996).
  32. K. W. An, “Cylindrical and spherical microcavity lasers based on evanescent-wave-coupled gain,” J. Chin. Chem. Soc. (Taipei) 48, 461–468 (2001).
  33. M. V. Artemyev and U. Woggon, “Quantum dots in photonic dots,” Appl. Phys. Lett. 76, 1353–1355 (2000).
  34. R. Jia, D. S. Jiang, P. H. Tan, and B. Q. Sun, “Quantum dots in glass spherical microcavity,” Appl. Phys. Lett. 79, 153–155 (2001).
  35. E. A. Perkins and D. J. Squirrell, “Development of instrumentation to allow the detection of microorganismsusing light scattering in combination with surface plasmon resonance,” Biosens. Bioelectron. 14, 853–859 (2000).
  36. G. Videen, “Light-scattering from a sphere behind a surface,” J. Opt. Soc. Am. A 10, 110–117 (1993).
  37. High Frequency Structure Simulator computer-modeling software supplied by Ansoft Corporate Headquarters, Four Station Square, Suite 200, Pittsburgh, Pa. 15219–1119.
  38. A. Shinya and M. Fukui, “Finite-difference time-domain analysis of the interaction of Gaussian evanescent light with a single dielectric sphere or ordered dielectric spheres,” Opt. Rev. 6, 215–223 (1999).
  39. A. Taflove, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, Boston, 1995).
  40. Y. Eremin and N. Orlov, “Modeling of light scattering by non-spherical particles based on discrete sources method,” J. Quant. Spectrosc. Radiat. Transf. 60, 451–462 (1998).
  41. M. J. Jory, E. A. Perkins, and J. R. Sambles, “Light scattering by microscopic spheres behind a glass–air interface,” J. Opt. Soc. Am. A 20, 1589–1594 (2003).
  42. Corning 7509 fusion-drawn glass supplied by Gooch and Housego Ltd., The Old Magistrates Court, Ilminster, Somerset, TA19 OAS, UK. http://www.goochandhousego.com.
  43. E. Hecht, Optics (Addison-Wesley, London, 1987), p. 94.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited