OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Vol. 21, Iss. 11 — Nov. 1, 2004
  • pp: 2117–2123

Overall coherence and coherent-mode expansion of spectrally partially coherent plane-wave pulses

Hanna Lajunen, Jani Tervo, and Pasi Vahimaa  »View Author Affiliations


JOSA A, Vol. 21, Issue 11, pp. 2117-2123 (2004)
http://dx.doi.org/10.1364/JOSAA.21.002117


View Full Text Article

Enhanced HTML    Acrobat PDF (148 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The modal theory for spectrally partially coherent nonstationary plane waves is introduced. The theory is first developed in the space–frequency domain and then extended to the space–time domain. Propagation properties of the coherent modes are analyzed. The concept of the overall degree of coherence is extended to the domain of nonstationary fields, and it is shown that the overall degree of coherence of partially coherent plane-wave pulses is the same in the space–frequency and space–time domains. The theory is applied to the recently introduced concept of spectrally Gaussian Schell-model plane-wave pulses.

© 2004 Optical Society of America

OCIS Codes
(030.1640) Coherence and statistical optics : Coherence
(030.6600) Coherence and statistical optics : Statistical optics
(320.5550) Ultrafast optics : Pulses

History
Original Manuscript: January 9, 2004
Revised Manuscript: May 11, 2004
Manuscript Accepted: May 11, 2004
Published: November 1, 2004

Citation
Hanna Lajunen, Jani Tervo, and Pasi Vahimaa, "Overall coherence and coherent-mode expansion of spectrally partially coherent plane-wave pulses," J. Opt. Soc. Am. A 21, 2117-2123 (2004)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-21-11-2117


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. L. Mandel, E. Wolf, Optical Coherence and Quantum Optics (Cambridge U. Press, Cambridge, UK, 1995).
  2. B. Cairns, E. Wolf, “The instantenous cross-spectral density of nonstationary wave fields,” Opt. Commun. 62, 215–218 (1986). [CrossRef]
  3. M. Bertolotti, A. Ferrari, L. Sereda, “Coherence properties of nonstationary polychromatic light sources,” J. Opt. Soc. Am. B 12, 341–347 (1995). [CrossRef]
  4. L. Sereda, M. Bertolotti, A. Ferrari, “Coherence properties of nonstationary light wave fields,” J. Opt. Soc. Am. A 15, 695–705 (1998). [CrossRef]
  5. M. Bertolotti, L. Sereda, A. Ferrari, “Application of the spectral representation of stochastic process to the study of nonstationary light radiation: a tutorial,” Pure Appl. Opt. 6, 153–171 (1997). [CrossRef]
  6. P. Pääkkönen, J. Turunen, P. Vahimaa, A. T. Friberg, F. Wyrowski, “Partially coherent Gaussian pulses,” Opt. Commun. 204, 53–58 (2002). [CrossRef]
  7. H. Lajunen, J. Tervo, J. Turunen, P. Vahimaa, F. Wyrowski, “Spectral coherence properties of temporally modulated stationary light sources,” Opt. Express 11, 1894–1899 (2003). [CrossRef] [PubMed]
  8. E. Wolf, “New spectral representation of random sources and of the partially coherent fields that they generate,” Opt. Commun. 38, 3–6 (1981). [CrossRef]
  9. E. Wolf, “New theory of partial coherence in the space–frequency domain. Part I: Spectra and cross spectra of steady-state sources,” J. Opt. Soc. Am. 72, 343–351 (1982). [CrossRef]
  10. E. Wolf, “New theory of partial coherence in the space–frequency domain. Part II: Steady-state fields and higher-order correlations,” J. Opt. Soc. Am. A 3, 76–85 (1986). [CrossRef]
  11. P. Vahimaa, J. Tervo, “Unified measures for optical fields: degree of polarization and effective degree of coherence,” J. Opt. A Pure Appl. Opt. 6, S41–S44 (2004). [CrossRef]
  12. M. J. Bastiaans, “New class of uncertainty relations for partially coherent light,” J. Opt. Soc. Am. A 1, 711–715 (1984). [CrossRef]
  13. F. Riesz, B. Sz.- Nagy, Functional Analysis (Ungar, New York, 1978), p. 245.
  14. G. B. Arfken, H. J. Weber, Mathematical Methods for Physicists (Acadamic, San Diego, Calif., 2001).
  15. L. Mandel, E. Wolf, “Complete coherence in the space–frequency domain,” Opt. Commun. 36, 247–249 (1981). [CrossRef]
  16. T. Setälä, J. Tervo, A. T. Friberg, “Complete electromagnetic coherence in the space–frequency domain,” Opt. Lett. 29, 328–330 (2004). [CrossRef]
  17. A. Starikov, E. Wolf, “Coherent-mode representation of Gaussian Schell-model sources and of their radiation fields,” J. Opt. Soc. Am. 72, 923–928 (1982). [CrossRef]
  18. F. Gori, “Collett-Wolf sources and multimode lasers,” Opt. Commun. 34, 301–305 (1980). [CrossRef]
  19. I. S. Gradshteyn, I. M. Ryzhik, Table of Integrals, Series, and Products (Academic, New York, 1980), p. 838, formula (7.376.1).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited