Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Differential theory: application to highly conducting gratings

Not Accessible

Your library or personal account may give you access

Abstract

The recently developed fast Fourier factorization method, which has greatly improved the application range of the differential theory of gratings, suffers from numerical instability when applied to metallic gratings with very low losses. This occurs when the real part of the refractive index is small, in particular, smaller than 0.1–0.2, for example, when silver and gold gratings are analyzed in the infrared region. This failure can be attributed to Li’s “inverse rule” [L. Li, J. Opt. Soc. Am. A 13, 1870 (1996)] as shown by studying the condition number of matrices that have to be inverted. Two ways of overcoming the difficulty are explored: first, an additional truncation of the matrices containing the coefficients of the differential system, which reduces the numerical problems in some cases, and second, an introduction of lossier material inside the bulk, thus leaving only a thin layer of the highly conducting metal. If the layer is sufficiently thick, this does not change the optical properties of the system but significantly improves the convergence of the differential theory, including the rigorous coupled-wave method, for various types of grating profiles.

© 2004 Optical Society of America

Full Article  |  PDF Article
More Like This
Differential theory of gratings made of anisotropic materials

Koki Watanabe, Roger Petit, and Michel Nevière
J. Opt. Soc. Am. A 19(2) 325-334 (2002)

Grating theory: new equations in Fourier space leading to fast converging results for TM polarization

Evgeni Popov and Michel Nevière
J. Opt. Soc. Am. A 17(10) 1773-1784 (2000)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (17)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (12)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.