OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Vol. 21, Iss. 3 — Mar. 1, 2004
  • pp: 346–354

Scheimpflug and high-resolution magnetic resonance imaging of the anterior segment: a comparative study

Jane F. Koretz , Susan A. Strenk , Lawrence M. Strenk , and John L. Semmlow  »View Author Affiliations


JOSA A, Vol. 21, Issue 3, pp. 346-354 (2004)
http://dx.doi.org/10.1364/JOSAA.21.000346


View Full Text Article

Acrobat PDF (634 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

High-resolution imaging with a camera system built on the Scheimpflug principle has been used to characterize the geometry of the anterior segment of the adult human eye as a function of aging and accommodative state but is critically dependent on algorithms for correction of distortion. High-resolution magnetic resonance imaging (MRI), in contrast, provides lower-resolution information about the adult eye but is undistorted. To test the accuracy of the Scheimpflug correction methods used by Cook and Koretz [J. Opt. Soc. Am. A 15, 1473 (1998)]; [Appl. Opt. 30, 2088 (1991)], data on anterior chamber and segment lengths, as well as lens thickness and anterior and posterior curvatures, were compared with corresponding MRI data for adults aged 18–50 at 0 diopter accommodation. Excellent statistical agreement was found between the MRI and the Scheimpflug data sets with the exception of the posterior lens radius of curvature, which is less well defined than the other measurements in the Scheimpflug images. The considerable agreement between data obtained with MR and Scheimpflug imaging, two different yet complementary in vivo imaging techniques, validates the Scheimpflug correction algorithms of Cook and Koretz and suggests the capability of directly integrating information from both. A third, equivalent, data set obtained with a Scheimpflug-style camera system differs considerably from both Scheimpflug and MRI results in magnitude and age dependence, with negative implications for this alternative method and its correction procedures.

© 2004 Optical Society of America

OCIS Codes
(110.2960) Imaging systems : Image analysis
(170.0110) Medical optics and biotechnology : Imaging systems
(170.3880) Medical optics and biotechnology : Medical and biological imaging
(170.4460) Medical optics and biotechnology : Ophthalmic optics and devices
(330.4300) Vision, color, and visual optics : Vision system - noninvasive assessment
(330.4460) Vision, color, and visual optics : Ophthalmic optics and devices

Citation
Jane F. Koretz , Susan A. Strenk , Lawrence M. Strenk , and John L. Semmlow , "Scheimpflug and high-resolution magnetic resonance imaging of the anterior segment: a comparative study," J. Opt. Soc. Am. A 21, 346-354 (2004)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-21-3-346


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. L. F. Garner and G. Smith, “Changes in equivalent and gradient refractive index of the crystalline lens with accommodation,” Optom. Vision Sci. 74, 114–119 (1997).
  2. A. P. Beers and G. L. van der Heijde, “Age-related changes in the accommodation mechanism,” Optom. Vision Sci. 73, 235–242 (1996).
  3. J. F. Koretz, P. L. Kaufman, M. W. Neider, and P. A. Goeckner, “Accommodation and presbyopia in the human eye—aging of the anterior segment,” Vision Res. 29, 1685–1692 (1989).
  4. N. A. Brown, A. J. Bron, W. Ayliffe, J. Sparrow, and A. R. Hill, “The objective assessment of cataract,” Eye 1, 234–246 (1987).
  5. M. L. Harris, K. J. Hanna, G. A. Shun-Shin, R. Holden, and N. A. Brown, “Analysis of retro-illumination photographs for use in longitudinal studies of cataract,” Eye 7, 572–577 (1993).
  6. R. Holden, J. Hesler, J. Forbes, and N. A. Brown, “Visual performance and objectively measured grades of cataract. A correlation of methods designed for use in longitudinal trials,” Optom. Vision Sci. 70, 982–985 (1993).
  7. J. M. Sparrow, N. A. Brown, G. A. Shun-Shin, and A. J. Bron, “The Oxford modular cataract image analysis system,” Eye 4, 638–648 (1990).
  8. U. Muller-Breitenkamp, H. Laser, and O. Hockwin, “Objectified measurement of eye lens transparency in elderly probands. Results of a Scheimpflug photography study over the course of three and a half years,” Klin. Monatsbl. Augenheilkd. 201, 97–101 (1992). (Original language, German. Abstract in English.)
  9. N. Brown, “An advanced slit-image camera,” Br. J. Ophthamol. 56, 624–631 (1972).
  10. N. Brown, “The change in lens curvature with age,” Exp. Eye Res. 19, 175–183 (1974).
  11. J. F. Koretz and G. H. Handelman, “The ‘lens paradox’ and image formation in accommodating human eyes,” in The Lens: Transparency and Cataract, G. Duncan, ed., Topics in Aging Research in Europe, Rijswijk, The Netherlands, 1986, pp. 57–64.
  12. N. Brown, “The change in shape and internal form of the lens of the eye on accommodation,” Exp. Eye Res. 15, 441–459 (1973).
  13. J. F. Koretz, G. H. Handelman, and N. P. Brown, “Analysis of human crystalline lens curvature as a function of accommodative state and age,” Vision Res. 24, 1141–1151 (1984).
  14. J. F. Koretz, P. L. Kaufman, M. W. Neider, and P. A. Goeckner, “Accommodation and presbyopia in the human eye. 1: Evaluation of in vivo measurement techniques,” Appl. Opt. 28, 1097–1102 (1989).
  15. C. A. Cook, J. F. Koretz, A. Pfahnl, J. Hyun, and P. L. Kaufman, “Aging of the human crystalline lens and anterior segment,” Vision Res. 34, 2945–2954 (1994).
  16. J. F. Koretz, C. A. Cook, and P. L. Kaufman, “Accommodation and presbyopia in the human eye. Changes in the anterior segment and crystalline lens with focus,” Invest. Ophthalmol. Visual Sci. 38, 569–578 (1997).
  17. J. F. Koretz, C. A. Cook, and P. L. Kaufman, “Aging of the human lens: changes in lens shape at zero-diopter accommodation,” J. Opt. Soc. Am. A 18, 265–272 (2001).
  18. J. F. Koretz, C. A. Cook, and P. L. Kaufman, “Aging of the human lens: changes in lens shape upon accommodation and with accommodative loss,” J. Opt. Soc. Am. A 19, 144–151 (2002).
  19. J. F. Koretz, A. Rogot, and P. L. Kaufman, “Physiological strategies for emmetropia,” Trans. Am. Ophthalmol. Soc. 93, 105–118 ; discussion 118–122 (1995).
  20. J. F. Koretz, “Development and aging of human visual focusing mechanisms,” in Trends in Optonics and Photonics: Vision Science and Its Applications, V. Lakshminarayanan, ed. (Optical Society of America, Washington, D.C., 2000), pp. 246–258.
  21. J. F. Koretz and C. A. Cook, “Aging of the optics of the human eye: lens refraction models and principal plane locations,” Optom. Vision Sci. 78, 396–404 (2001).
  22. J. F. Koretz, C. A. Cook, and J. R. Kuszak, “The zones of discontinuity in the human lens: development and distribution with age,” Vision Res. 34, 2955–2962 (1994).
  23. T. Newton and I. Bilaniuk, Radiology of the Eye and Orbit (Raven, New York, 1990).
  24. J. M. Miller, “Functional anatomy of normal human rectus muscles,” Vision Res. 29, 223–240 (1989).
  25. R. A. Clark, J. M. Miller, and J. L. Demer, “Location and stability of rectus muscle pulleys. Muscle paths as a function of gaze,” Invest. Ophthalmol. Visual Sci. 38, 227–240 (1997).
  26. R. A. Clark, J. M. Miller, and J. L. Demer, “Three-dimensional location of human rectus pulleys by path inflections in secondary gaze positions,” Invest. Ophthalmol. Visual Sci. 41, 3787–3797 (2000).
  27. B. A. Moffat, K. A. Landman, R. J. Truscott, M. H. Sweeney, and J. M. Pope, “Age-related changes in the kinetics of water transport in normal human lenses,” Exp. Eye Res. 69, 663–669 (1999).
  28. B. A. Moffat, D. A. Atchison, and J. M. Pope, “Age-related changes in refractive index distribution and power of the human lens as measured by magnetic resonance micro-imaging in vitro,” Vision Res. 42, 1683–1693 (2002).
  29. B. A. Moffat and J. M. Pope, “Anisotropic water transport in the human eye lens studied by diffusion tensor NMR micro-imaging,” Exp. Eye Res. 74, 677–687 (2002).
  30. B. A. Moffat and J. M. Pope, “The interpretation of multi-exponential water proton transverse relaxation in the human and porcine eye lens,” Magn. Reson. Imaging 20, 83–93 (2002).
  31. F. A. Bettelheim, “Syneretic response to pressure in ocular lens,” J. Theor. Biol. 197, 277–280 (1999).
  32. F. A. Bettelheim, M. J. Lizak, and J. S. Zigler, Jr., “Relaxographic studies of aging normal human lenses,” Exp. Eye Res. 75, 695–702 (2002).
  33. F. A. Bettelheim, M. J. Lizak, and J. S. Zigler, Jr., “Syneretic response of aging normal human lens to pressure,” Invest. Ophthalmol. Visual Sci. 44, 258–263 (2003).
  34. S. A. Strenk, J. L. Semmlow, L. M. Strenk, P. Munoz, J. Gronlund-Jacob, and J. K. DeMarco, “Age-related changes in human ciliary muscle and lens: a magnetic resonance imaging study,” Invest. Ophthalmol. Visual Sci. 40, 1162–1169 (1999).
  35. L. Strenk, S. Strenk, and J. Semmlow, “Measurement of the aging ciliary muscle and processes,” Invest. Ophthalmol. Visual Sci. ARVO Suppl. 41, S564 (2000).
  36. S. Strenk, J. Semmlow, and L. Strenk, “In-vivo lens biometry using high resolution MRI,” Invest. Ophthalmol. Visual Sci. ARVO Suppl. 41, S4 (2000).
  37. L. Strenk, S. Strenk, J. L. Semmlow, and A. Krudy, “High resolution in vivo MR imaging of the human zonules,” Invest. Ophthalmol. Visual Sci. ARVO Suppl. 42, S283 (2001).
  38. S. A. Strenk, L. M. Strenk, J. L. Semmlow, and J. K. DeMarco, “Magnetic resonance imaging study of the effect of age and accommodation on the human lens cross sectional area,” Invest. Ophthalmol. Visual Sci. (to be published).
  39. C. A. Cook and J. F. Koretz, “Acquisition of the curves of the human crystalline lens from slit lamp images: an application of the Hough transform,” Appl. Opt. 30, 2088–2099 (1991).
  40. M. Dubbelman and G. L. Van der Heijde, “The shape of the aging human lens: curvature, equivalent refractive index and the lens paradox,” Vision Res. 41, 1867–1877 (2001).
  41. C. A. Cook and J. F. Koretz, “Methods to obtain quantitative parametric descriptions of the optical surfaces of the human crystalline lens from Scheimpflug slit-lamp images. I. Image processing methods,” J. Opt. Soc. Am. A 15, 1473–1485 (1998).
  42. N. Brown, “Quantitative slit-image photography of the lens,” Trans. Ophthalmol. Soc. U. K. 92, 303–307 (1972).
  43. N. Brown, “The shape of the lens equator,” Exp. Eye Res. 19, 571–576 (1974).
  44. S. J. Judge and H. J. Burd, “Modelling the mechanics of accommodation and presbyopia,” Ophthalmic Physiol. Opt. 22, 397–400 (2002).
  45. H. J. Burd, S. J. Judge, and J. A. Cross, “Numerical modelling of the accommodating lens,” Vision Res. 42, 2235–2251 (2002).
  46. J. F. Koretz and G. H. Handelman, “Model of the accommodative mechanism in the human eye,” Vision Res. 22, 917–927 (1982).
  47. J. F. Koretz and G. H. Handelman, “A model for accommodation in the young human eye: the effects of lens elastic anisotropy on the mechanism,” Vision Res. 23, 1679–1686 (1983).
  48. J. F. Koretz and G. H. Handelman, “Modeling age-related accommodation loss in the human eye,” Int. J. Math. Modeling 7, 1003–1014 (1986).
  49. C. A. Cook and J. F. Koretz, “Modeling the optical properties of the aging human crystalline lens from computer processed Scheimpflug images in relation to the lens paradox,” in Vision Science and Its Applications, Vol. 1 of 1995 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1995), pp. 138–141.
  50. J. F. Koretz, “Models of the Lens and Aging,” in Models of the Visual System, K. J. Ciuffreda, ed. (Kluwer Academic/Plenum, New York, 2001).
  51. M. Dubbelman, G. L. van der Heijde, and H. A. Weeber, “The thickness of the aging human lens obtained from corrected Scheimpflug images,” Optom. Vision Sci. 78, 411–416 (2001).
  52. A. P. Beers and G. L. van der Heijde, “Analysis of accommodation function with ultrasonography,” Doc. Ophthalmol. 92, 1–10 (1996).
  53. A. Glasser and M. C. Campbell, “Presbyopia and the optical changes in the human crystalline lens with age,” Vision Res. 38, 209–229 (1998).
  54. A. Glasser and M. C. Campbell, “Biometric, optical and physical changes in the isolated human crystalline lens with age in relation to presbyopia,” Vision Res. 39, 1991–2015 (1999).
  55. R. A. Weale, “On potential causes of presbyopia,” Vision Res. 39, 1263–1272 (1999).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited