OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Vol. 21, Iss. 4 — Apr. 1, 2004
  • pp: 640–646

New generalized Bessel–Gaussian beams

Yajun Li, Hungte Lee, and Emil Wolf  »View Author Affiliations

JOSA A, Vol. 21, Issue 4, pp. 640-646 (2004)

View Full Text Article

Enhanced HTML    Acrobat PDF (859 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Analytical expressions are derived for a new set of optical beams, in which the radial dependence is described by a sum of Bessel distributions of different orders, modified by a flat-topped Gaussian function expressed in the form 1-[1-exp(-ξ2)]M, where ξ is a dimensionless parameter and M(1) is a scalar quantity. The flat-topped Gaussian function can be readily expanded into a series of the lowest-order Gaussian modes with different parameters; this situation makes it possible to express the optical beam as a series of conventional Bessel–Gaussian beams of different orders. The propagation features of this new set of optical beams are investigated to reveal how a windowed Bessel beam passes progressively from a smooth Gaussian window toward the hard-edge limit.

© 2004 Optical Society of America

OCIS Codes
(050.0050) Diffraction and gratings : Diffraction and gratings
(140.3300) Lasers and laser optics : Laser beam shaping

Original Manuscript: May 30, 2003
Revised Manuscript: October 23, 2003
Manuscript Accepted: December 1, 2003
Published: April 1, 2004

Yajun Li, Hungte Lee, and Emil Wolf, "New generalized Bessel–Gaussian beams," J. Opt. Soc. Am. A 21, 640-646 (2004)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. Durnin, “Exact solution for nondiffracting beams: I. The scalar theory,” J. Opt. Soc. Am. A 4, 651–654 (1987). [CrossRef]
  2. J. Durnin, J. J. Miceli, J. H. Eberly, “Diffraction-free beams,” Phys. Rev. Lett. 58, 1499–1501 (1987). [CrossRef] [PubMed]
  3. R. M. Herman, T. A. Wiggins, “Apodization of diffractionless beams,” Appl. Opt. 31, 5913–5915 (1992). [CrossRef] [PubMed]
  4. F. Gori, G. Guattari, C. Padovani, “Bessel-Gauss beams,” Opt. Commun. 64, 491–495 (1987). [CrossRef]
  5. Z. Jiang, Q. Lu, Z. Liu, “Propagation of apertured Bessel beams,” Appl. Opt. 34, 7183–7185 (1995). [CrossRef] [PubMed]
  6. A. J. Cox, J. D’Anna, “Constant-axial-intensity nondiffracting beams,” Opt. Lett. 17, 232–234 (1992). [CrossRef] [PubMed]
  7. C. Palma, V. Bagini, “Propagation of super-Gaussian beams,” Opt. Commun. 111, 6–10 (1994). [CrossRef]
  8. S. Rushin, “Modified Bessel nondiffracting beams,” J. Opt. Soc. Am. A 11, 3224–3228 (1994). [CrossRef]
  9. G. Indebetouw, “Nondiffracting optical fields: some remarks on their analysis and synthesis,” J. Opt. Soc. Am. A 6, 150–152 (1989). [CrossRef]
  10. V. Bagini, F. Frezza, M. Santarsiero, G. Schettini, G. Spagolos, “Generalized Bessel-Gauss beams,” J. Mod. Opt. 43, 1155–1166 (1996).
  11. C. Palma, G. Cincotti, G. Guattari, M. Santarsiero, “Imaging of generalized Bessel–Gauss beams,” J. Mod. Opt. 43, 2269–2277 (1996). [CrossRef]
  12. R. Piestun, J. Shamir, “Generalized propagation-invariant fields,” J. Opt. Soc. Am. A 15, 3039–3044 (1998). [CrossRef]
  13. Y. Li, V. Gurevich, M. Krichever, J. Katz, E. Marom, “Propagation of anisotropic Bessel-Gaussian beams: sidelobe control, mode selection and field depth,” Appl. Opt. 40, 2709–2721 (2001). [CrossRef]
  14. Y. Li, “New expressions for flat-topped light beams,” Opt. Commun. 206, 225–234 (2002). [CrossRef]
  15. F. Gori, “Flattened Gaussian beams,” Opt. Commun. 107, 335–341 (1994). [CrossRef]
  16. M. Born, E. Wolf, Principles of Optics, 7th ed. (Cambridge U. Press, Cambridge, UK, 1999), Sec. 8.2.2.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited